Cras vitae turpis lacinia, lacinia la cus non, fermentum nisi.
Our Research Papers
Abstracts of Our Reseach Papers
K-means Based Automatic Pests Detection and Classification for Pesticides Spraying
Abstract: Agriculture is the backbone to the living being that plays a vital role to country’s economy. Agriculture production is inversely affected by pest infestation and plant diseases. Plants vitality is directly affected by the pests as poor or abnormal. Automatic pest detection and classification is an essential research phenomenon, as early detection and classification of pests as they appear on the plants may lead to minimizing the loss of production. This study puts forth a comprehensive model that would facilitate the detection and classification of the pests by using Artificial Neural Network (ANN). In this approach, the image has been segmented from the fields by using enhanced K-Mean segmentation technique that identifies the pests or any object from the image. Subsequently, features will be extracted by using Discrete Cosine Transform (DCT) and classified using ANN to classify pests. The proposed approach is verified for five pests that exhibited 94% effectiveness while classifying the pests.
AQUABOT: A DIAGNOSTIC CHATBOT FOR ACHLUOPHOBIA AND AUTISM
Abstract Chatbots or chatter bots have been a good way to entertain one. This paper emphasizes on the use of a chatbot in the diagnosis of Achluophobia – the fear of darkness and autism disorder. Autism and Achluophobia (fear of darkness) are the most common neurodevelopment disorders usually found in children. State of the art trivial diagnosis methods require a lot of time and are also unable to maintain the case history of psychological disease. A chatbot has been developed in this work which can diagnose the severity of disease based on user’s text based questions. It performs Natural Language Processing (NLP) for meaning extraction and uses Decision Trees to characterize a patient in terms of possible disease. NLP unit extracts meaning of keywords defining intensity of disease’s symptoms, from user’s chat. After that similarity matching of sentence containing keywords is performed. Depth First Search (DFS) technique is used for traversing Decision Tree and making decision about severity of disease. The proposed system namely Aquabot, proves to be an efficient technique in diagnosing Achluophobia and Autism. Aquabot is useful for practitioner psychologists to assist a human psychologist. Aquabot not only saved time and resources but also achieved an accuracy of 88 percent when compared against human psychologist’s diagnosed results.