Rectification

Muhammad Hafeez Javed rmhjaved@gmail.com

www.Rmhjaved.com

Single-Phase Half-Wave Rectifier

Waveforms

Single-Phase Half-Wave Rectifier

Performance Parameters

- Average value of the output voltage, V_{dc}
- Average value of the output current, $I_{d c}$
- Output dc power, P_{dc}
$-P_{d c}=V_{d c} l_{d c}$
- rms value of the output voltage, $\mathrm{V}_{\mathrm{rms}}$
- Output ac power, P_{ac}
$-\mathrm{P}_{\mathrm{ac}}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}$

Example 3.1

- Determine V_{dc} and I_{dc}

Determine the Average Voltage, V_{dc}

$$
\begin{aligned}
& V_{u c}=\frac{1}{T} \int_{0}^{r} v_{t}(t) d t \\
& V_{d c}=\frac{1}{T} \int_{0}^{\frac{T}{0}} V_{m} \sin \omega t d t \\
& V_{u c}=-\frac{V_{m}}{\omega T}\left(\cos \frac{\omega T}{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& f=\frac{1}{T} \\
& \omega=2 \pi f \\
& V_{d c}=\frac{V_{m}}{\pi}=0.318 V_{m} \\
& I_{d c}=\frac{V_{d c}}{R}=\frac{0.318 V_{m}}{R}
\end{aligned}
$$

FULL WAVE RECTIFIER

- Center-Tapped
- Bridge

Full-Wave Rectification - circuit with center-tapped transformer

> Positive cycle, D2 off, D1 conducts;

$$
\begin{aligned}
& \mathrm{Vo}-\mathrm{Vs}+\mathrm{V} \gamma=0 \\
& \mathrm{Vo}=\mathrm{Vs}-\mathrm{V} \gamma
\end{aligned}
$$

> Negative cycle, D1 off, D2 conducts;

$$
\begin{aligned}
& \mathrm{Vo}-\mathrm{Vs}+\mathrm{V} \gamma=0 \\
& \mathrm{Vo}=\mathrm{Vs}-\mathrm{V} \gamma
\end{aligned}
$$

Since a rectified output voltage occurs during both positive and negative cycles of
 the input signal, this circuit is called a fullwave rectifier.

Also notice that the polarity of the output voltage for both cycles is the same

$\mathrm{Vs}=\mathrm{Vpsin} \omega \mathrm{t}$

Notice again that the peak voltage of Vo is lower since $\mathrm{Vo}=\mathrm{Vs}-\mathrm{V}_{\boldsymbol{\gamma}}$

- $\mathbf{V s}<\mathbf{V} \gamma$, diode off, open circuit, no current flow, $\underline{\mathrm{Vo}=\mathbf{0 V}}$

Full-Wave Rectification -Bridge Rectifier

Positive cycle, D_{1} and D_{2} conducts, D_{3} and D_{4}
off;
$+\mathrm{V} \gamma+\mathrm{Vo}+\mathrm{V} \gamma-\mathrm{Vs}=0$
$\underline{\mathrm{Vo}}=\mathrm{Vs}-\mathbf{2} \mathrm{V}_{\gamma}$
Negative cycle, D3 and D4 conducts, D1 and D2 off $+\mathrm{V} \gamma+\mathrm{Vo}+\mathrm{V} \gamma-\mathrm{Vs}=0$ $\underline{V_{0}}=\mathbf{V s}-\mathbf{2 V}{ }_{\gamma}$

$>$ Also notice that the polarity of the output voltage for both cycles is the same

- A full-wave center-tapped rectifier circuit is shown in Fig. 3.1. Assume that for each diode, the cut-in voltage, $\mathrm{V}_{\gamma}=0.6 \mathrm{~V}$ and the diode forward resistance, r_{f} is 15Ω. The load resistor, $R=95 \Omega$. Determine:
- peak output voltage, V_{0} across the load, R
- Sketch the output voltage, V_{0} and label its peak value.

- SOLUTION

- peak output voltage, V_{0}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s} \text { (peak) }}=125 / 25=5 \mathrm{~V} \\
& \mathrm{~V}_{\gamma}+\mathrm{I}_{\mathrm{D}}(15)+\mathrm{I}_{\mathrm{D}}(95)-\mathrm{V}_{\mathrm{s} \text { (peak) }}=0 \\
& \mathrm{I}_{\mathrm{D}}=(5-0.6) / 110=0.04 \mathrm{~A} \quad v_{p} \\
& \mathrm{~V}_{\mathrm{o} \text { (peak) }}=95 \times 0.04=\underline{3.8 \mathrm{~V} \text { (peak }} \begin{array}{l}
\text { voltage) } \\
\text { (} \text { sine wave) }
\end{array}
\end{aligned}
$$

