Chapter 5
Control Statements: Part 2;

Logical Operators
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

m Learn the essentials of counter-controlled repetition.

m Use the for and do...whi1e repetition statements to execute statements in a program
repeatedly.

m Understand multiple selection using the swi tch selection statement.
m Use the break and continue program control statements to alter the flow of control.

m Use the logical operators to form complex conditional expressions in control statements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Introduction

Essentials of Counter-Controlled Repetition

for Repetition Statement

Examples Using the for Statement

do...wh1ile Repetition Statement

switch Multiple-Selection Statement

Class AutoPoT1icy Case Study: Strings in switch Statements
break and continue Statements

Logical Operators

Structured Programming Summary

(Optional) GUI and Graphics Case Study: Drawing Rectangles and
Ovals

Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.1 Introduction

» Tor repetition statement

» do...wh1 1e repetition statement

» switch multiple-selection statement
» break statement

» continue statement

» Logical operators

» Control statements summary.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.2 Essentials of Counter-Controlled
Repetition
» Counter-controlled repetition requires

= a control variable (or loop counter)
= the initial value of the control variable

= the increment by which the control variable is modified each
time through the loop (also known as each iteration of the

loop)
= the loop-continuation condition that determines if looping
should continue.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

// Fig. 5.1: WhileCounter.java
// Counter-controlled repetition with the while repetition statement.

public class WhileCounter

{
public static void main(String[] args)
{
int counter = 1; // declare and initialize control variable
while (counter <= 10) // loop-continuation condition
{
System.out.printf("%d ", counter);
++counter; // increment control variable
h
System.out.printin();
}

} // end class WhileCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.1 | Counter-controlled repetition with the while repetition statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.2 Essentials of Counter-Controlled
Repetition (Cont.)

» In Fig. 5.1, the elements of counter-controlled
repetition are defined in lines 8, 10 and 13.

» Line 8 declares the control variable (counter) as an
1nt, reserves space for it in memory and sets its initial
value to 1.

» The loop-continuation condition in the wh1 1e (line 10)
tests whether the value of the control variable is less
than or equal to 10 (the final value for which the
condition Is true).

» Line 13 increments the control variable by 1 for each
Iteration of the loop.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.1

Because floating-point values may be approximate, con-
trolling loops with floating-point variables may result in
imprecise counter values and inaccurate termination

rests.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| Error-Prevention Tip 5.1
Use integers to control counting loops.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

» Software Engineering Observation 5.1
“Keep it simple” is good advice for most of the code you'll

write.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.3 for Repetition Statement

» for repetition statement

= Specifies the counter-controlled-repetition details in a single
line of code.

= Figure 5.2 reimplements the application of Fig. 5.1 using for.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

15

// Fig. 5.2: ForCounter.java
// Counter-controlled repetition with the for repetition statement.

public class ForCounter

{

public static void main(String[] args)

{
// for statement header includes initialization,
// loop-continuation condition and increment
for (int counter = 1; counter <= 10; counter++)

System.out.printf("%d ", counter);

System.out.println();

3

} // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.2 | Counter-controlled repetition with the for repetition statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.3 for Repetition Statement (Cont.)

» When the for statement begins executing, the control variable is
declared and initialized.

» Next, the program checks the loop-continuation condition, which
IS between the two required semicolons.

» If the condition initially is true, the body statement executes.

» After executing the loop’s body, the program increments the
control variable in the increment expression, which appears to
the right of the second semicolon.

» Then the loop-continuation test is performed again to determine
whether the program should continue with the next iteration of
the loop.

» A common logic error with counter-controlled repetition is an
off-by-one error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.2
Using an incorrect relational operator or an incorrect fi-

nal value of a loop counter in the loop-continuation con-
dition of a repetition statement can cause an off-by-one

error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.2

Using the final value and operator < in a loop’s condi-
tion helps avoid off-by-one errors. For a loop that outputs
I to 10, the loop-continuation condition should be
counter <= 10 rather than counter < 10 (which
causes an off-by-one error) or counter < 11 (which is
correct). Many programmers prefer so-called zero-based
counting, in which to count 10 times, counter would
be initialized to zero and the loop-continuation test
would be counter < 10.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.3

As Chapter 4 mentioned, integers can overflow, causing
logic errors. A loop’s control variable also could overflow.
Write your loop conditions carefully to prevent this.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

for keyword Control variable Required semicolon Required semicolon

. N '

for (int counter = 1; counter <= 10; counter++)
N >y

Initial value of Loop-continuation Incrementing of
control variable condition control variable

Fig. 5.3 | for statement header components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.3 for Repetition Statement (Cont.)

» The general format of the Tor statement is

for (initialization ; loopContinuationCondition,; increment)
statement

= the initialization expression names the loop’s control variable
and optionally provides its initial value

= loopContinuationCondition determines whether the loop
should continue executing

= increment modifies the control variable’s value, so that the
loop-continuation condition eventually becomes false.

» The two semicolons in the for header are required.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.3 for Repetition Statement (Cont.)

» The for statement often can be represented with an equivalent
wh1 1e statement as follows:
initialization ;
while (loopContinuationCondition)

statement
increment;

}
» Typically, Tor statements are used for counter-controlled

repetition and wh1 1e statements for sentinel-controlled
repetition.

» If the initialization expression in the Tor header declares the
control variable, the control variable can be used only in that
for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.3 for Repetition Statement (Cont.)

» A variable’s scope defines where it can be used in a program.

= Alocal variable can be used only in the method that declares it and only
from the point of declaration through the end of the method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.3

When a for statement’s control variable is declared in
the initialization section of the for’s header, using the
control variable after the for’s body is a compilation er-

rov.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.3 for Repetition Statement (Cont.)

» All three expressions in a for header are optional.
= |f the loopContinuationCondition is omitted, the condition is always
true, thus creating an infinite loop.
= You might omit the initialization expression if the program initializes
the control variable before the loop.

= You might omit the increment if the program calculates it with
statements in the loop’s body or 1f no increment 1s needed.

» The increment expression in a for acts as if it were a
standalone statement at the end of the for’s body, so

counter = counter + 1
counter += 1
++counter

counter++

are equivalent increment expressions in a for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.4

Placing a semicolon immediately to the right of the right
parenthesis of a for header makes that for’s body an
empty statement. This is normally a logic error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.4

Infinite loops occur when the loop-continuation condi-
tion in a repetition statement never becomes false. To
prevent this situation in a counter-controlled loop, en-
sure that the control variable is modified during each it-
eration of the loop so that the loop-continuation
condition will eventually become false. In a sentinel-

controlled loop, ensure that the sentinel value is able to
be input.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.3 for Repetition Statement (Cont.)

» The initialization, loop-continuation condition and
Increment can contain arithmetic expressions.
» For example, assumethatx =2 andy =10.If xand y
are not modified in the body of the loop, the statement
for (int J =x; J <=4 *x*vy; J+=Yy / X)
» 1S equivalent to the statement
for (int j = 2; J <= 80; j += 5)
» The increment of a for statement may be negative, in
which case 1t’s a decrement, and the loop counts
downward.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.5
Although the value of the control variable can be
changed in the body of a for loop, avoid doing so, be-

cause this practice can lead to subtle errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

. In|t|aI|ze - ——- 1int counter = 1

control variable

[counter <= 10] ;
~ Display the
counter value

Increment the
control variable

[counter > 10]

I
Determine whether !
looping should | counter++
continue :

System.out.printf(“%d ', counter);

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement

» a)Vary the control variable from 1 to 100 in
increments of 1.
for (Aint 1 = 1; 1 <= 100; 1++)
» b)Vary the control variable from 100 to 1 in
decrements of 1.
for (int 1 = 100; 1 >= 1; 1--)
» c)Vary the control variable from 7 to 77 in increments

of /.
for (int 1 =7; 1 <= 77; 1 += 7)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement
(Cont.)

» d)Vary the control variable from 20 to 2 in decrements

of 2.
for (int 1 = 20; 1 >=2; 1 -= 2)
» e)Vary the control variable over the values 2, 5, §, 11,
14,17, 20.
for (int i = 2; 1 <= 20; 1 += 3)
» f)Vary the control variable over the values 99, 88, 77,
66, 55, 44, 33, 22,11, 0.
for (int 1 = 99; 1 >=0; 1 -= 11)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.5

Using an incorrect relational operator in the loop-con-
tinuation condition of a loop that counts downward
(e.g., using 1 <= 1 instead of 1 >= 1 in a loop counting
down to 1) is usually a logic error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.6

Do not use equality operators (1= or ==) in a loop-con-
tinuation condition if the loop’s control variable incre-
ments or decrements by more than 1. For example,
consider the for statement header

for (int counter =1; counter !=10; counter
+=2). The loop-continuation test counter != 10 nev-
er becomes false (resulting in an infinite loop) because
counter increments by 2 after each iteration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.5: Sum.java

2 // Summing integers with the for statement.

3

4 public class Sum

5 {

6 public static void main(String[] args)

7 {

8 int total = 0;

9

10 // total even integers from 2 through 20
11 for (int number = 2; number <= 20; number += 2)
12 total += number;

13

14 System.out.printf("Sum is %d%n", total);
15 }

16 } // end class Sum

Sum is 110

Fig. 5.5 | Summing integers with the for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement
(Cont.)

» The Initialization and Iincrement expressions can be
comma-separated lists that enable you to use multiple
Initialization expressions or multiple increment
expressions.

» Although this is discouraged, the body of the for
statement in lines 11-12 of Fig. 5.5 could be merged
into the increment portion of the for header by using a

comma as follows:

for (int number = 2;
number <= 20;
total += number, number += 2)
» // empty statement

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

, Good Programming Practice 5. |
| For readability limit the size of control-statement head-
ers to a single line if possible.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement
(Cont.)

» Compound Interest application

» A person invests 51,000 in a savings account yielding
5% interest. Assuming that all the interest is left on
deposit, calculate and print the amount of money in
the account at the end of each year for 10 years. Use
the following formula to determine the amounts:

a=p(1+r)
where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years

a is the amount on deposit at the end of the nth year.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement
(Cont.)

» The solution to this problem (Fig. 5.6) involves a loop
that performs the indicated calculation for each of the
10 years the money remains on deposit.

» Java treats floating-point constants like 1000. 0 and
0.05 as type double.

» Java treats whole-number constants like 7 and -22 as
type 1nt.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 5.6: Interest.java

2 // Compound-interest calculations with for.

3

4 public class Interest

5

6 public static void main(String[] args)

7 {

8 double amount; // amount on deposit at end of each year
9 double principal = 1000.0; // initial amount before interest
10 double rate = 0.05; // interest rate

11

12 // display headers

13 System.out.printf("%s%20s%n", "Year", "Amount on deposit");
14

15 // calculate amount on deposit for each of ten years

16 for (int year = 1; year <= 10; ++year)

17 {

18 // calculate new amount for specified year

19 amount = principal * Math.pow(1.0 + rate, year);
20
21 // display the year and the amount
22 System.out.printf("%4d%,20.2f%n", year, amount);
23 }
24 }

25 1} // end class Interest

.6 | Compound-interest calculations with for. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
]
s3]
_S

1,050

1,477

SQOUWwNOYUL B WN P

'—\

1,551.
1,628.

Amount on deposit
.00
1,102.
1,157.
1,215.
1,276.
1,340.
1,407.
.46

50
63
51
28
10
10

33
89

Fig. 5.6 | Compound-interest calculations with for. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement
(Cont.)

» In the format specifier %20s, the integer 20 between the %
and the conversion character s indicates that the value
output should be displayed with a field width of 20—that
is, printf displays the value with at least 20 character
positions.

» If the value to be output is less than 20 character positions
wide, the value is right justified in the field by default.

» If the year value to be output were more thanhas more

characters than the field width, the field width would be
extended to the right to accommodate the entire value.

» To Indicate that values should be output left justified,
precede the field width with the minus sign (=) formatting

flag (e.g., %-205).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement
(Cont.)

» Classes provide methods that perform common tasks on objects.
» Most methods must be called on a specific object.

» Someclasses also provide methods that perform common tasks
and do not require you to first create objects of those classes.
These are called static methods.

» Java does not include an exponentiation operator—Math class
static method pow can be used for raising a value to a power.

» You can call a static method by specifying the class name
followed by a dot (.) and the method name, as in
* ClassName . methodName (arguments)
» Math.pow(x, y) calculates the value of x raised to the yt"
power. The method receives two doub 1e arguments and returns
a double value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<55 Performance Tip 5.1
222 In loops, avoid calculations for which the result never
changes—such calculations should typically be placed be-

fore the loop. Many of today’s sophisticated optimizing
compilers will place such calculations outside loops in the

compiled code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.4 Examples Using the for Statement

(Cont.)

>

In the format specifier %, 20. 2T, the comma (,)
formatting flag indicates that the floating-point value
should be output with a grouping separator.

Separator 1s specific to the user’s locale (i.e., country).

In the United States, the number will be output using
commas to separate every three digits and a decimal point
to separate the fractional part of the number, as in 1,234.45.

The number 20 in the format specification indicates that the
value should be output right justified in a field width of 20
characters.

The . 2 specifies the formatted number’s precision—in this
case, the number is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.6

Do not use variables of type double (or float) to per-
form precise monetary calculations. The imprecision of
floating-point numbers can lead to errors. In the exercis-
es, you Il learn how to use integers to perform precise
monetary calculations—/Java also provides class
java.math.BigDecimal for this purpose, which we
demonstrate in Fig. 8.16.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.5 do...wh1i1le Repetition Statement

» The do...while repetition statement is similar to the
wh1 1e statement.

» In the wh1 1e, the program tests the loop-continuation
condition at the beginning of the loop, before executing
the loop’s body; if the condition is false, the body never
executes.

» The do...wh1 1e statement tests the loop-continuation
condition after executing the loop’s body; therefore, the
body always executes at least once.

» When a do...wh1 1e statement terminates, execution
continues with the next statement in sequence.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.7: DoWhileTest.java

2 // do...while repetition statement.

3

4 public class DoWhileTest

5 {

6 public static void main(String[] args)

7 {

8 int counter = 1;

9

10 do

11 {

12 System.out.printf("%d ", counter);
13 ++counter;

14 } while (counter <= 10); // end do...while
15

16 System.out.printin();

17 }

I8 } // end class DoWhileTest

1 2 3 4 5 6 7 8 9 10

Fig. 5.7 | do..while repetition statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.5 do...wh1i1le Repetition Statement
(Cont.)

» Figure 5.8 contains the UML activity diagram for the
do...wh1 1e statement.

» The diagram makes it clear that the loop-continuation
condition is not evaluated until after the loop performs
the action state at least once.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Display the

System.out.printf(“%d ", counter); -----
counter value

Increment the
control variable

++counter -----

[counter <= 10]

Determine whether _ _ _ _ _ _ _ _ _ _
looping should
continue [counter > 10]

Fig. 5.8 | do..while repetition statement UML activity diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.5 do...wh1i1le Repetition Statement
(Cont.)

» Braces are not required in the do...wh1 1e repetition
statement 1f there’s only one statement 1n the body.

» Most programmers include the braces, to avoid
confusion between the while and do...while

Statements.

» Thus, the do...wh1 1e statement with one body

statement Is usually written as follows:
- do
{

statement
} while (condition);

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

, Good Programming Practice 5.2

| Always include braces in a do..wh1i1e statement. This
helps eliminate ambiguity between the while statement
and a do...wh1i1e statement containing only one state-

ment.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.6 switch Multiple-Selection Statement

» switch multiple-selection statement performs different
actions based on the possible values of a constant

integral expression of type byte, short, int or
char.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 5.9: LetterGrades.java

2 // LetterGrades class uses the switch statement to count letter grades.
3 import java.util.Scanner;

4

5 public class LetterGrades

6 {

7 public static void main(String[] args)

8 {

9 int total = 0; // sum of grades
10 int gradeCounter = 0; // number of grades entered
11 int aCount = 0; // count of A grades
12 int bCount = 0; // count of B grades

13 int cCount = 0; // count of C grades

14 int dCount = 0; // count of D grades

15 int fCount = 0; // count of F grades

16

17 Scanner input = new Scanner(System.in);

18

19 System.out.printf("%skn%s%n %s¥%n %s¥kn',
20 "Enter the integer grades in the range 0-100.",
21 "Type the end-of-file 1indicator to terminate input:",
22 "On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter",
23 "On Windows type <Ctrl> z then press Enter");

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades.
(Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // loop until user enters the end-of-file indicator
26 while (input.hasNext())

27 {

28 int grade = input.nextInt(); // read grade

29 total += grade; // add grade to total

30 ++gradeCounter; // increment number of grades
31

32 // 1increment appropriate letter-grade counter
33 switch (grade / 10)

34 {

35 case 9: // grade was between 90

36 case 10: // and 100, inclusive

37 ++aCount;

38 break; // exits switch

39

40 case 8: // grade was between 80 and 89

41 ++bCount;

42 break; // exits switch

43

44 case 7: // grade was between 70 and 79

45 ++cCount;

46 break; // exits switch

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades.
(Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47

48 case 6: // grade was between 60 and 69
49 ++dCount;

50 break; // exits switch

51

52 default: // grade was less than 60

53 ++fCount;

54 break; // optional; exits switch anyway
55 } // end switch

56 } // end while

57

58 // display grade report

59 System.out.printf("%nGrade Report:%n");

60

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades.
(Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

61 // if user entered at least one grade...

62 if (gradeCounter != 0)

63 {

64 // calculate average of all grades entered

65 double average = (double) total / gradeCounter;

66

67 // output summary of results

68 System.out.printf("Total of the %d grades entered is %d%n",
69 gradeCounter, total);

70 System.out.printf("Class average 1is %.2f%n", average);

71 System.out.printf ("%n%s%n%s%dini%s%d%n%s%d%nd%sledisnissiedin ,
72 "Number of students who received each grade:",

73 "A: ", aCount, // display number of A grades

74 "B: ", bCount, // display number of B grades

75 "C: ", cCount, // display number of C grades

76 "D: ", dCount, // display number of D grades

77 "F: ", fCount); // display number of F grades

78 } // end if

79 else // no grades were entered, so output appropriate message
80 System.out.printin("No grades were entered");

] | } // end main

82 1} // end class LetterGrades

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades.
(Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter the integer grades in the range 0-100.

Type the end-of-file indicator to terminate input:
On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter
On Windows type <Ctrl> z then press Enter

99

92

45

57

63

71

76

85

20

100

V4

Grade Report:
Total of the 10 grades entered 1is 778
Class average is 77.80

Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2
Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.6 switch Multiple-Selection Statement

<

(Cont.)

>

The end-of-file indicator Is a system-dependent keystroke
combination which the user enters to indicate that there Is no
more data to input.

On UNIX/Linux/Mac OS X systems, end-of-file Is entered by
typing the sequence

* <Ctrl>d
on a line by itself. This notation means to simultaneously press
both the Ctrl key and the d key.
On Windows systems, end-of-file can be entered by typing

* <Ctrl>z
On some systems, you must press Enter after typing the end-of-
file key sequence.

Windows typically displays the characters AZ on the screen when
the end-of-file indicator is typed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

my Portability Tip 5.1
18| The keystroke combinations for entering end-of-file are
system dependent.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.6 switch Multiple-Selection Statement
(Cont.)

» Scanner method hasNext determine whether there Is
more data to input. This method returns the boolean
value true if there IS more data; otherwise, It returns
false.

» As long as the end-of-file indicator has not been typed,
method hasNext will return true.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.6 switch Multiple-Selection Statement
(Cont.)

» The sw1 tch statement consists of a block that contains a
sequence of case labels and an optional default case.

» The program evaluates the controlling expression in the
parentheses following keyword switch.

» The program compares the controlling expression’s value
(which must evaluate to an integral value of type byte,
char, short or 1nt, orto a string) with each case label.

» If a match occurs, the program executes that case’s
statements.

» The break statement causes program control to proceed with
the first statement after the sw1tch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.6 switch Multiple-Selection Statement
(Cont.)

» switch does not provide a mechanism for testing ranges of
values—every value must be listed in a separate case label.

» Note that each case can have multiple statements.

» sw1tch differs from other control statements in that it does not
require braces around multiple statements in a case.

» Without break, the statements for a matching case and
subsequent cases execute until a break or the end of the
switch is encountered. This is called “falling through.”

» If no match occurs between the controlling expression’s value
and a case label, the default case executes.

» If no match occurs and there is no default case, program
control simply continues with the first statement after the
switch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.7
Forgetting a break statement when one is needed in a
switch is a logic error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.7
In a switch statement, ensure that you test for all pos-
sible values of the controlling expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.6 switch Multiple-Selection Statement
(Cont.)

» Figure 5.10 shows the UML activity diagram for the
general switch statement.

» Most sw1tch statements use a break in each case
to terminate the sw1tch statement after processing the
case.

» The break statement is not required for the switch’s
last case (or the optional default case, when it
appears last), because execution continues with the next
statement after the swi tch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

case 4 case aactions(s) break

case b actions(s) '% break ’9(>

case b

N

[true] .)
case z - case z actions(s) ’% break '9(
[false]

default actions(s)

Fig. 5.10 | switch multiple-selection statement UML activity diagram with
break statements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.8
Provide a default case in switch statements. This fo-
cuses you on the need to process exceptional conditions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

gy Good Programming Practice 5.3

Although each case and the default casein a switch
can occur in any order, place the default case last.
When the default case is listed last, the break for that
case is not required.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.6 switch Multiple-Selection Statement
(Cont.)

» When using the sw1tch statement, remember that each
case must contain a constant integral expression.

» An Integer constant Is simply an integer value.

» In addition, you can use character constants—specific
characters in single quotes, suchas 'A', "7 ' or '$'—
which represent the integer values of characters.

» The expression in each case can also be a constant
variable—a variable that contains a value which does not
change for the entire program. Such a variable is declared
with keyword final.

» Java has a feature called enum types—enum type constants
can also be used in case labels.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.7 Class AutoPolicy Case Study:
Strings in switch Statements

» Strings can be used as controlling expressions in switch
statements, and string literals can be used in case labels.

» App requirements:

* You’ve been hired by an auto insurance company that serves
these northeast states—Connecticut, Maine, Massachusetts,
New Hampshire, New Jersey, New York, Pennsylvania,
Rhode Island and Vermont. The company would like you to
create a program that produces a report indicating for each
of their auto insurance policies whether the policy is held in
a state with “no-fault” auto insurance—Massachusetts, New
Jersey, New York and Pennsylvania.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.7 Class AutoPolicy Case Study:
Strings in switch Statements (Cont.)

» Class AutoPo 11 cy represents an auto insurance policy. The class
contains:

» 1nt instance variable accountNumber to store the policy’s account
number

» String instance variable makeAndmodeT to store the car’s make and
model (suchasa "Toyota Camry')

» String instance variable state to store a two-character state
abbreviation representing the state in which the policy is held (e.g., "MA
for Massachusetts)

» a constructor that initializes the class’s instance variables

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.11: AutoPolicy.java

2 // Class that represents an auto insurance policy.

3 public class AutoPolicy

4 {

5 private int accountNumber; // policy account number

6 private String makeAndModel; // car that the policy applies to
7 private String state; // two-letter state abbreviation
8

9 // constructor

10 public AutoPolicy(int accountNumber, String makeAndModel, String state)
11 {

12 this.accountNumber = accountNumber;

13 this.makeAndModel = makeAndModel;

14 this.state = state;

15 }

16

17 // sets the accountNumber

I8 public void setAccountNumber(int accountNumber)

19 {
20 this.accountNumber = accountNumber;
21 }
22

Fig. 5.11 | Class that represents an auto insurance policy. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // returns the accountNumber

24 public int getAccountNumber()

25 {

26 return accountNumber;

27 }

28

29 // sets the makeAndModel

30 public void setMakeAndModel (String makeAndModel)
31 {

32 this.makeAndModel = makeAndModel;
33 }

34

35 // returns the makeAndModel

36 public String getMakeAndModel ()
37 {

38 return makeAndModel;

39 }

40

41 // sets the state

42 public void setState(String state)
43 {

44 this.state = state;

45 }

46

Fig. 5.11 | Class that represents an auto insurance policy. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

// returns the state
public String getState()
{

return state;

}

// predicate method returns whether the state has no-fault insurance
public boolean isNoFaultState()

{
boolean noFaultState;
// determine whether state has no-fault auto insurance
switch (getState()) // get AutoPolicy object's state abbreviation
{
case "MA": case "N]": case "NY": case "PA":
noFaultState = true;
break;
default:
noFaultState = false;
break;
}
return noFaultState;
}

} // end class AutoPolicy

l | Class that represents an auto insurance policy. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.7 Class AutoPolicy Case Study:
Strings in switch Statements (Cont.)

» methods setAccountNumber and getAccountNumber to set and
get an AutoPol1cy’s accountNumber instance variable

» methods setMakeAndMode | and getMakeAndMode to set and get
an AutoPol1cy’s makeAndModel instance variable

» methods setState and getState to setand get an AutoPolicy’s
state instance variable

» method 1sNoFaultState to return a boolean value indicating whether
the policy is held in a no-fault auto insurance state; note the method
name—the naming convention for a get method that returns a boolean
value is to begin the name with "1s" rather than "get" (such a method is
commonly called a predicate method).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.7 Class AutoPolicy Case Study:
Strings in switch Statements (Cont.)

» Class AutoPolicyTest (Fig. 5.12) creates two AutoPo 11 cy objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.12: AutoPolicyTest.java

2 // Demonstrating Strings in switch.

3 public class AutoPolicyTest

4 {

5 public static void main(String[] args)

6 {

7 // create two AutoPolicy objects

8 AutoPolicy policyl =

9 new AutoPolicy(11111111, "Toyota Camry", "NJI");
10 AutoPolicy policy2 =

11 new AutoPolicy (22222222, "Ford Fusion”™, "ME");
12

13 // display whether each policy is in a no-fault state
14 policyInNoFaultState(policyl);

15 policyInNoFaultState(policy2);

16 }

17

Fig. 5.12 | Demonstrating Strings in switch. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

18 // method that displays whether an AutoPolicy

19 // is in a state with no-fault auto insurance

20 public static void policyInNoFaultState(AutoPolicy policy)

21 {

22 System.out.println("The auto policy:");

23 System.out.printf(

24 "Account #: %d; Car: %s; State %s %s a no-fault state%n¥%n",
25 policy.getAccountNumber(), policy.getMakeAndModel(),

26 policy.getState(),

27 (policy.isNoFaultState() 7 "is": "is not"));

28 }

29 } // end class AutoPolicyTest

The auto policy:
Account #: 11111111; Car: Toyota Camry;
State NJ] 1is a no-fault state

The auto policy:
Account #: 22222222; Car: Ford Fusion;
State ME 1is not a no-fault state

Fig. 5.12 | Demonstrating Strings in switch. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.8 break and continue Statements

» The break statement, when executed in awh1 1e,

for, do...wh1i1e or switch, causes immediate exit
from that statement.

» Execution continues with the first statement after the
control statement.

» Common uses of the break statement are to escape
early from a loop or to skip the remainder of a
switch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.13: BreakTest.java

2 // break statement exiting a for statement.

3 public class BreakTest

4 {

5 public static void main(String[] args)

6 {

7 int count; // control variable also used after loop terminates
8

9 for (count = 1; count <= 10; count++) // loop 10 times

10 {

11 if (count == 5)

12 break; // terminates Toop if count 1is 5

13

14 System.out.printf("%d ", count);

I5 }

16

17 System.out.printf("%nBroke out of lToop at count = %d%n", count);
18 }

19 } // end class BreakTest

1234
Broke out of Toop at count = 5

Fig. 5.13 | break statement exiting a for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.8 break and continue Statements
(Cont.)

» The cont1nue statement, when executed in a
while, foror do...wh1ile, skips the remaining

statements in the loop body and proceeds with the next
iteration of the loop.

» Inwh11eand do...wh1 1e statements, the program

evaluates the loop-continuation test immediately after
the cont1nue statement executes.

» In a for statement, the increment expression executes,
then the program evaluates the loop-continuation test.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.14: ContinueTest.java

2 // continue statement terminating an iteration of a for statement.
3 public class ContinueTest

4 {

5 public static void main(String[] args)

6 {

7 for (int count = 1; count <= 10; count++) // loop 10 times
8 {

9 if (count == 5)

10 continue; // skip remaining code in loop body if count 1is 5
11

12 System.out.printf("%d ", count);

13 }

14

I5 System.out.printf("%nlUsed continue to skip printing 5%n");
16 }

17 } // end class ContinueTest

12340678910
Used continue to skip printing 5

Fig. 5.14 | continue statement terminating an iteration of a for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

N2 Software Engineering Observation 5.2

B Some programmers feel that break and continue
violate structured programming. Since the same effects
are achievable with structured programming techniques,
these programmers do not use break or continue.

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

’,‘\g Software Engineering Observation 5.3

P s
£ Y

There’s a tension between achieving quality software
engineering and achieving the best-performing software.
Sometimes one of these goals is achieved at the expense of
the other. For all but the most performance-intensive
situations, apply the following rule of thumb: First, make
your code simple and correct; then make it fast and
small, but only if necessary.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators

» Java’s logical operators enable you to form more
complex conditions by combining simple conditions.

» The logical operators are
= && (conditional AND)
= | | (conditional OR)
= & (boolean logical AND)
= | (boolean logical inclusive OR)
= A (boolean logical exclusive OR)
= | (logical NOT).
» [Note: The &, | and A operators are also bitwise
operators when they are applied to integral operands.]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

» The & (conditional AND) operator ensures that two
conditions are both true before choosing a certain path
of execution.

» The table in Fig. 5.15 summarizes the && operator. The
table shows all four possible combinations of false
and true values for expressionl and expression?2.

» Such tables are called truth tables. Java evaluates to
false or true all expressions that include relational
operators, equality operators or logical operators.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

expression| expression2 expression| && expression2

false false false
false true false
true false false
true true true

Fig. 5.15 | && (conditional AND) operator truth table.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

» The || (conditional OR) operator ensures that either
or both of two conditions are true before choosing a
certain path of execution.

» Figure 5.16 is a truth table for operator conditional OR
(11).

» Operator && has a higher precedence than operator | |.

» Both operators associate from left to right.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

expression | expression2 expression| | | expression2

false false false
false true true
true false true
true true true
Fig. 5.16 | || (conditional OR) operator truth table.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

» The parts of an expression containing && or | |
operators are evaluated only until 1t’s known whether
the condition is true or false. T

» This feature of conditional AND and conditional OR
expressions Is called short-circuit evaluation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 5.8
In expressions using operator &&, a condition—uwe’ll call
this the dependent condition—may require another
condition to be true for the evaluation of the dependent
condition to be meaningful. In this case, the dependent
condition should be placed atter the && operator to pre-
vent errors. Consider the expression (1 !=0) & (10 /
i ==2). The dependent condition (10 / i == 2)
must appear after the & operator to prevent the possi-
bility of division by zero.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

» The boolean logical AND (&) and boolean logical
Inclusive OR (|) operators are identical to the && and
| | operators, except that the & and | operators always
evaluate both of their operands (i.e., they do not
perform short-circuit evaluation).

» This Is useful if the right operand has a required side
effect—a modification of a variable’s value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.9

For clarity, avoid expressions with side effects (such as as-
signments) in conditions. They can make code harder to
understand and can lead to subtle logic errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 5.10

Assignment (=) expressions generally should not be used
in conditions. Every condition must result in a booT-
ean value; otherwise, a compilation error occurs. In a
condition, an assignment will compile only if a booT -
ean expression is assigned to a boolean variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

» A simple condition containing the boolean logical
exclusive OR (M) operator iIs true if and only if one of
its operands is true and the other is false.

» If both are true or both are false, the entire
condition is false.

» Figure 5.17 Is a truth table for the boolean logical
exclusive OR operator (A).

» This operator Is guaranteed to evaluate both of its
operands.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

false false false

false true true
true false true
true true false

Fig. 5.17 | A (boolean logical exclusive OR) operator truth table.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

>

The ! (logical NOT, also called logical negation or logical
complement) operator “reverses” the meaning of a
condition.

The logical negation operator is a unary operator that has
only one condition as an operand.

The logical negation operator is placed before a condition to
choose a path of execution if the original condition (without
the logical negation operator) is false.

In most cases, you can avoid using logical negation by
expressing the condition differently with an appropriate
relational or equality operator.

Figure 5.18 is a truth table for the logical negation operator.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

expression | expression

false true

true false

Fig. 5.18 | ! (logical NOT) operator truth table.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.9 Logical Operators (Cont.)

» Figure 5.19 produces the truth tables discussed in this

section.
» The %b format specifier displays the word “true” or
the word “false” based on a boo1ean expression’s

value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 5.19: LogicalOperators.java

2 // Logical operators.

3

4 public class LogicalOperators

5 {

6 public static void main(String[] args)

7 {

8 // create truth table for && (conditional AND) operator

9 System.out.printf("%sknis: %b¥ni%s: %b%nY%s: %b%n%s: %b%n%n',
10 "Conditional AND (&&)", "false && false", (false && false) |,
11 "false && true", (false && true) ,

12 "true && false”", (true &% false)

13 "true &% true", (true & & true));

14

15 // create truth table for || (conditional OR) operator

16 System.out.printf("%skinis: %b¥%n¥ks: %b¥nk%s: %b%n%s: %b¥%n%n',
17 "Conditional OR (||)", "false || false", (false || false) ,
18 "false || true", (false || true) ,

19 "true || false", (true || false) ,
20 "true || true", (true || true));
21

Fig. 5.19 | Logical operators. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// create truth table for & (boolean logical AND) operator
System.out.printf("%skn¥ks: %bknis: %b¥%n%s: %b%nik%s: %b%n%n",
"Boolean logical AND (&))", "false & false", (false & false) |,
"false & true", (false & true) ,
"true & false", (true & false) ,
"true & true", (true & true));

// create truth table for | (boolean logical inclusive OR) operator
System.out.printf("%sknis: %b¥ni%s: %b¥%nY%s: %b%n%s: %b%n%n',
"Boolean logical inclusive OR (|)",
"false | false", (false | false) ,
"false | true", (false | true) |,
"true | false", (true | false) |,
"true | true", (true | true));

// create truth table for A (boolean logical exclusive OR) operator
System.out.printf("%skn¥%s: %b%nks: %b¥kn%s: %bkniks: %b%nkn',
"Boolean logical exclusive OR (A)",
"false A false", (false A false) |,
"false A true", (false A true) |,
"true A false", (true A false) |,
"true A true”, (true A true));

Fig. 5.19 | Logical operators. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

45 // create truth table for ! (logical negation) operator

46 System.out.printf("%s%n¥%s: %b%n%s: %b%n", "Logical NOT (!)",
47 "Ifalse", (Yfalse) , "!ltrue", (!true));
48 }

49 1} // end class LogicalOperators

Conditional AND (&&)

false && false: false
false && true: false

true && false: false

true && true: true

Conditional OR (|])

false || false: false
false || true: true
true || false: true
true || true: true

Boolean Togical AND (&)
false & false: false
false & true: false
true & false: false
true & true: true

Fig. 5.19 | Logical operators. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Boolean Togical inclusive OR (|)
false | false: false

false | true: true

true | false: true

true | true: true

Boolean Togical exclusive OR (A)
false A false: false

false A true: true

true A false: true

true A true: false

Logical NOT (!)
Ifalse: true
'true: false

Fig. 5.19 | Logical operators. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

TR right to left unary postfix

++ -+ - 1 (mpe right to left unary prefix

/% left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

= |I= left to right equality

& left to right boolean logical AND

A left to right boolean logical exclusive OR
| left to right boolean logical inclusive OR
&& left to right conditional AND

|| left to right conditional OR

7 right to left conditional

= 4= -= *= [= %= right to left assignment

Fig. 5.20 | Precedence/associativity of the operators discussed so far.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.10 Structured Programming Summary

» Figure 5.21 uses UML activity diagrams to summarize
Java’s control statements.

» Java includes only single-entry/single-exit control
statements—there is only one way to enter and only one
way to exit each control statement.

» Connecting control statements in sequence to form
structured programs is simple. The final state of one control
statement Is connected to the initial state of the next—that
IS, the control statements are placed one after another in a
program in sequence. We call this control-statement
stacking.

» The rules for forming structured programs also allow for
control statements to be nested.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Sequence Selection

if statement switch statement with breaks
v (single selection) (multiple selection)
-‘V-) [t] [t]
, [f] [
: [t] (
v m

if...else statement
(double selection)

- (X [--)
e~ ?9_)%_)%&

default processmg

o-

Fig. 5.21 | Java's single-entry/single-exit sequence, selection and repetition
statements. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Repetition

while statement do...while statement for statement

! !

initialization

t i
[t] .

[f] [f

—)9 increment '

Fig. 5.21 | Java's single-entry/single-exit sequence, selection and repetition
statements. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1. Begin with the simplest activity diagram (Fig. 5.23).
Any action state can be replaced by two action states in sequence.

3. Any action state can be replaced by any control statement (sequence
of action states, if, if...else, switch, while, do...while or for).

4. Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 5.22 | Rules for forming structured programs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

!

action state

Fig. 5.23 | Simplest activity diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

apply
rule 2

apply
rule 2

apply
rule 2

action state ’

I

action state

action state action state action state

action state

T

I I
I I
I I
I I
I I
I I
I I
I I
: action state action state :
I I
I I
I I
I I
I I
I I
I I

Fig. 5.24 | Repeatedly applying rule 2 of Fig. 5.22 to the simplest activity
diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

action state

apply
b--- rule 3

Fig. 5.25 | Repeatedly applying rule 3 of Fig. 5.22 to the simplest activity diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

action state

action state

action state ’e action state

Fig. 5.26 | “Unstructured” activity diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.10 Structured Programming Summary
(Cont.)

» Structured programming promotes simplicity.

» Bohm and Jacopini: Only three forms of control are
needed to Implement an algorithm:
= sequence
= selection
= repetition

» The sequence structure Is trivial. Simply list the
statements to execute in the order in which they should

execute.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.10 Structured Programming Summary
(Cont.)

» Selection is implemented in one of three ways:
= 1T statement (single selection)
= 1f...else statement (double selection)
= sw1tch statement (multiple selection)

» The simple 1T statement is sufficient to provide any
form of selection—everything that can be done with the
1f...else statement and the sw1tch statement can
be implemented by combining 1 f statements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.10 Structured Programming Summary
(Cont.)

» Repetition i1s implemented in one of three ways:
= wh1 1 e statement

= do...wh1i1e statement
= for statement

» The wh1 1e statement is sufficient to provide any form

of repetition. Everything that can be done with

do...while and for can be done with the whi1e
statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

5.10 Structured Programming Summary
(Cont.)

» Combining these results illustrates that any form of
control ever needed in a Java program can be expressed
In terms of

= sequence
= 1T statement (selection)

= wh1 1e statement (repetition)

and that these can be combined in only two ways—
stacking and nesting.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5.11 (Optional) GUI and Graphics Case
Study: Drawing Rectangles and Ovals

» Graphics methods drawRect and drawOval

» Method drawRect requires four arguments. The first two
represent the x- and y-coordinates of the upper-left corner of
the rectangle; the next two represent the rectangle’s width

and height.

» To draw an oval, method drawOval creates an imaginary
rectangle called a bounding rectangle and places inside it
an oval that touches the midpoints of all four sides.

» Method drawOva l requires the same four arguments as
method drawRect. The arguments specify the position
and size of the bounding rectangle for the oval.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

10
11
12
13
14
15

// Fig. 5.27: Shapes.java
// Drawing a cascade of shapes based on the user’s choice.
import java.awt.Graphics;
import javax.swing.JPanel;

public class Shapes extends JPanel

{

private int choice; // user's choice of which shape to draw

// constructor sets the user's choice
public Shapes(int userChoice)

{
}

choice = userChoice;

Fig. 5.27 | Drawing a cascade of shapes based on the user’s choice. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

16 // draws a cascade of shapes starting from the top-left corner

17 public void paintComponent(Graphics g)

I8 {

19 super.paintComponent(g);

20

21 for (int i = 0; i < 10; i++)

22 {

23 // pick the shape based on the user's choice
24 switch (choice)

25 {

26 case 1: // draw rectangles

27 g.drawRect(10 + i * 10, 10 + i * 10,
28 50 + 1 * 10, 50 + i * 10);

29 break;

30 case 2: // draw ovals

31 g.drawOval (10 + i * 10, 10 + i * 10,
32 50 + 1 * 10, 50 + i * 10);

33 break;

34 }

35 }

36 }

37 1} // end class Shapes

Fig. 5.27 | Drawing a cascade of shapes based on the user’s choice. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 5.28: ShapesTest.java

2 // Obtaining user input and creating a JFrame to display Shapes.
3 dimport javax.swing.JFrame; //handle the display

4 import javax.swing.JOptionPane;

5

6 public class ShapesTest

7 {

8 public static void main(String[] args)

9 {

10 // obtain user's choice

11 String input = JOptionPane.showInputDialog(

12 "Enter 1 to draw rectangles\n" +

13 "Enter 2 to draw ovals");

14

I5 int choice = Integer.parselnt(input); // convert input to int
16

17 // create the panel with the user's 1input

I8 Shapes panel = new Shapes(choice);

19
20 JFrame application = new JFrame(); // creates a new JFrame
21

Fig. 5.28 | Obtaining user input and creating a JFrame to display Shapes. (Part |
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 application.setDefaultCloselperation(JFrame.EXIT_ON_CLDSE);

23 application.add(panel);
24 application.setSize(300, 300);
25 application.setVisible(true);
26 }
27 1} // end class ShapesTest
e = (&) e
Enter 1 to draw rectangles
6 Enter 2 to draw ovals
K |
k‘ Cancel

Fig. 5.28 | Obtaining user input and creating a JFrame to display Shapes. (Part 2
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Input

=

Enter 1 to draw rectangles

Enter 2 to draw ovals

|2

Cancel

(=] ==

Fig. 5.28 | Obtaining user input and creating a JFrame to display Shapes. (Part 3
of 3)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

