Chapter 6
Methods: A Deeper Look

Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES

In this chapter you'll learn:

m How static methods and fields are associated with classes rather than objects.

m How the method-call/return mechanism is supported by the method-call stack.

m About argument promotion and casting.

m How packages group related classes.

m How to use secure random-number generation to implement game-playing applications.
m How the visibility of declarations is limited to specific regions of programs.

m What method overloading is and how to create overloaded methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction

Program Modules in Java

static Methods, static Fields and Class Math
Declaring Methods with Multiple Parameters
Notes on Declaring and Using Methods
Method-Call Stack and Stack Frames

Argument Promotion and Casting

6.8 Java API Packages

6.9
6.10
6.11
6.12
6.13
6.14

Case Study: Secure Random-Number Generation

Case Study: A Game of Chance; Introducing enum Types

Scope of Declarations

Method Overloading

(Optional) GUI and Graphics Case Study: Colors and Filled Shapes
Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.1 Introduction

» Best way to develop and maintain a large program is to
construct it from small, simple pieces, or modules.
= divide and conquer.

» Topics In this chapter
= static methods
= Method-call stack
= Simulation techniques with random-number generation.

= How to declare values that cannot change (i.e., constants) in
your programs.

= Method overloading.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.2 Program Modules in Java

» Java programs combine new methods and classes that
you write with predefined methods and classes
available in the Java Application Programming
Interface and in other class libraries.

» Related classes are typically grouped into packages so
that they can be imported into programs and reused.

= You’ll learn how to group your own classes into packages in
Section 21.4.10.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

'\uv’ Software Engineering Observation 6. |

S8 Familiarize yourself with the rich collection of classes
and methods provided by the Java API (http://
docs.oracle.com/javase/7/docs/api/).
Section 6.8 overviews several common packages. Online
Appendix F explains how to navigate the APl
documentation. Don’t reinvent the wheel. When
possible, reuse Java API classes and methods. This
reduces program development time and avoids
introducing programming errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

6.2 Program Modules in Java (Cont.)

Divide and Conquer with Classes and Methods

» Classes and methods help you modularize a program by
separating its tasks into self-contained units.

» Statements in method bodies

= Written only once
= Hidden from other methods
= Can be reused from several locations in a program

» Divide-and-conquer approach
= Constructing programs from small, simple pieces

» Software reusability
= Use existing classes and methods as building blocks to create new
pro-grams.
» Dividing a program into meaningful methods makes the
program easier to debug and maintain.

."»‘3 3 %
3 A\ \|
A\ Y
W N
‘m‘. \ \
9 %
AN\ \

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

P,w, Software Engineering Observation 6.2

&Y To promote software reusability, every method should be
limited to performing a single, well-defined task, and the
name of the method should express that task effectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 6.1
A method that performs one task is easier to test and de-
bug than one that performs many tasks.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hEZ Software Engineering Observation 6.3
Ar"g__ [f_yO% cannot CbOOSC‘ a concise name thdt €Xp7"€55€5 a

methods task, your method might be attempting to
perform too many tasks. Break such a method into
several smaller ones.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

6.2 Program Modules in Java (Cont.)

Hierarchical Relationship Between Method Calls

» Hierarchical form of management (Fig. 6.1).

= A boss (the caller) asks a worker (the called method) to
perform a task and report back (return) the results after
completing the task.

= The boss method does not know how the worker method
performs its designated tasks.

= The worker may also call other worker methods, unbeknown to
the boss.
» “Hiding” of implementation details promotes good
software engineering.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 6.2
When you call a method that returns a value indicating

whether the method performed its task successfully, be
sure to check the return value of that method and, if that

method was unsuccessful, deal with the issue appropri-
ately.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

boss

SN

workerl worker?2 worker3

/N

worker4 worker5

Fig. 6.1 | Hierarchical boss-method/worker-method relationship.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
6.3 static Methods, static Fields ané
Class Math

Sometimes a method performs a task that does not depend on an
object.

= Applies to the class in which i1t’s declared as a whole

= Known as a static method or a class method

It’s common for classes to contain convenient Static methods
to perform common tasks.

To declare a method as static, place the keyword static
before the return type in the method’s declaration.

Calling a static method
- ClassName . methodName (arguments)

v

v

v

v

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
6.3 static Methods, static Fields ané
Class Math (Cont.)

Math Class Methods

» Class Math provides a collection of static methods
that enable you to perform common mathematical
calculations.

» Method arguments may be constants, variables or
expressions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

N2 Software Engineering Observation 6.4

S Class Math is part of the java. lang pﬂckﬂge, which is
implicitly imported by the compiler, so it’s not necessary
to import class Math to use its methodb.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

abs(x)

ceil(x)

cos(x)

exp(x)

floor(x)

Tog (x)

max(x,)

min(x,)

absolute value of x

rounds x to the smallest integer not
less than x

trigonometric cosine of x (x in radi-
ans)

exponential method ¢*

rounds x to the largest integer not
greater than x

natural logarithm of x (base ¢)

larger value of x and y

smaller value of x and y

Fig. 6.2 | Math class methods. (Part | of 2.)

abs(23.7) 1s 23.7
abs(0.0) 1s0.0

abs(-23.7) 1s 23.7
ceil(9.2) 15 10.0
ceil(-9.8) is -9.0

cos(0.0) i1s1.0

exp(1.0) 1s2.71828
exp(2.0) is 7.38906

floor(9.2) 1s 9.0
floor(-9.8) 1s -10.0
Tog(Math.E) is 1.0
Tog(Math.E * Math.E) is 2.0
max(2.3, 12.7)1s12.7
max(-2.3, -12.7) 1s-2.3
min(2.3, 12.7)1s2.3
min(-2.3, -12.7) is -12.7

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Method Description

pow(x, %) x raised to the power y (i.e., x7)

sin(x) trigonometric sine of x (x in radians)

sqrt(x) square root of x

tan(x) trigonometric tangent of x (x in radi-
ans)

Fig. 6.2 | Math class methods. (Part 2 of 2.)

Example

pow(2.0, 7.0) 1s 128.0
pow(9.0, 0.5) is 3.0

sin(0.0) 1s0.0
sqrt(900.0) is 30.0
tan(0.0) 1s 0.0

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
6.3 static Methods, static Fields ané
Class Math (Cont.)

» Recall that each object of a class maintains its own copy of
every Instance variable of the class.

» There are variables for which each object of a class does not
need its own separate copy (as you’ll see momentarily).

» Such variables are declared static and are also known as class
variables.

» When objects of a class containing static variables are
created, all the objects of that class share one copy of those
variables.

» Together a class’s static variables and instance variables are
known as its fields.

You’ll learn more about static fields in Section 8.11.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
6.3 static Methods, static Fields ané
Class Math (Cont.)

Math Class static Constants PI and E

» Math fields for commonly used mathematical constants
= Math.PI (3.141592653589793)
= Math.E (2.718281828459045)
» Declared in class Math with the modifiers pub1ic, final
and static
= pub11c allows you to use these fields in your own classes.

= A field declared with keyword final is constant—its value
cannot change after the field is initialized.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
6.3 static Methods, static Fields ané
Class Math (Cont.)

Why is method ma7ndeclared stat7c?

» The JVM attempts to invoke the main method of the
class you specify—at this point no objects of the class
have been created.

» Declaring main as static allows the JVM to invoke
ma1n without creating an instance of the class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.4 Declaring Methods with Multiple
Parameters

» Multiple parameters are specified as a comma-
separated list.

» There must be one argument in the method call for each
parameter (sometimes called a formal parameter) in the
method declaration.

» Each argument must be consistent with the type of the
corresponding parameter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 6.3: MaximumFinder.java

2 // Programmer-declared method maximum with three double parameters.
3 import java.util.Scanner;

4

5 public class MaximumFinder

6 {

7 // obtain three floating-point values and locate the maximum value
8 public static void main(String[] args)

9 {
10 // create Scanner for input from command window
11 Scanner input = new Scanner(System.in);

12

13 // prompt for and input three floating-point values

14 System.out.print(

15 "Enter three floating-point values separated by spaces: ");
16 double numberl = input.nextDouble(); // read first double

17 double number2 = input.nextDouble(); // read second double
18 double number3 = input.nextDouble(); // read third double

19
20 // determine the maximum value
21 double result = maximum(numberl, number2, number3);
22

Fig. 6.3 | Programmer-declared method maximum with three double parameters.
(Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // display maximum value

24 System.out.println("Maximum is: " + result);

25 }

26

27 // returns the maximum of its three double parameters

28 public static double maximum(double x, double y, double Zz)
29 {

30 double maximumValue = x; // assume x is the largest to start
31

32 // determine whether y 1is greater than maximumValue

33 if (y > maximumValue)

34 maximumValue = y;

35

36 // determine whether z 1is greater than maximumValue

37 if (z > maximumValue)

38 maximumValue = z;

39

40 return maximumValue;

41 }

42 } // end class MaximumFinder

Fig. 6.3 | Programmer-declared method maximum with three double parameters.
(Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Enter three floating-point values separated by spaces: 5.8 12.45 8.32
Maximum is: 12.45

Enter three floating-point values separated by spaces: 6.46 4.12 10.54
Maximum is: 10.54

Fig. 6.3 | Programmer-declared method maximum with three double parameters.
(Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

w» Software Engineering Observation 6.5
Methods can return at most one value, but the returned
value could be a reference to an object that contains
many values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

pgg Software Engineering Observation 6.6

L—‘ B Variables should be declared as fields only if they re

required for use in more than one method of the class or
if the program should save their values between calls to

the class’s methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.1

Declaring method parameters of the same type as float
X, y instead of float x, float y isa syntax error—
a type is required for each parameter in the parameter
list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.4 Declaring Methods with Multiple
Parameters (Cont.)

Implementing method max 7mumby reusing method
Math.max

» Two calls to Math.max, as follows:
= return Math.max(x, Math.max(C vy, z));

» The first specifies arguments X and Math.max(y, z).

» Before any method can be called, its arguments must be
evaluated to determine their values.

» If an argument is a method call, the method call must be
performed to determine its return value.

» The result of the first call is passed as the second argument to
the other call, which returns the larger of its two arguments.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.4 Declaring Methods with Multiple
Parameters (Cont.)

Assembling Strings with String Concatenation

>

>

String concatenation

= Assemble String objects into larger strings with operators + or +=.
When both operands of operator + are Strings, operator +
creates a new String object

= characters of the right operand are placed at the end of those in the left
operand

Every primitive value and object in Java can be represented as a
String.

When one of the + operator’s operands is a String, the other is
converted to a String, then the two are concatenated.

If a boolean is concatenated with a String, the boolean is
converted to the String "true” or "false"

All objects have a toString method that returns aString
representation of the object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.2

It'’s a syntax error to break a String literal across lines.
If necessary, you can split a String into several smaller
Strings and use concatenation to form the desired
String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.3

Confusing the + operator used for string concatenation
with the + operator used for addition can lead to strange
results. Java evaluates the operands of an operator from
left to right. For example, if integer variable y has the
value 5, the expression "y + 2 ="+ y + 2 results in the
string "y + 2= 52", not "y + 2 = 7", because first the
value of y (5) is concatenated to the string "y + 2 = ",
then the value 2 is concatenated to the new larger string
"y + 2 =15". The expression "y + 2 ="+ (y + 2) pro-
duces the desired result "y + 2 =7".

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.5 Notes on Declaring and Using
Methods

» Three ways to call a method:

= Using a method name by itself to call another method of the
same class

= Using a variable that contains a reference to an object,

followed by a dot (.) and the method name to call a method of
the referenced object

= Using the class name and a dot (.) to call a static method
of a class

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.5 Notes on Declaring and Using
Methods (Cont.)

» Non-static methods are typically called instance
methods.

» A static method can call other static methods of
the same class directly and can manipulate static

variables in the same class directly.
= To access the class’s instance variables and instance methods, a
static method must use a reference to an object of the class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.5 Notes on Declaring and Using
Methods (Cont.)

» Three ways to return control to the statement that calls
a method:
= When the program flow reaches the method-ending right brace
= When the following statement executes
return;
= When the method returns a result with a statement like

return expression;

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.4
Declaring a method outside the body of a class declara-
tion or inside the body of another method is a syntax er-

ror.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.5
Redeclaring a parameter as a local variable in the meth-
od’s body is a compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.6

Forgetting to return a value from a method that should
return a value is a compilation error. If a return type
other than void is specified, the method must contain a
return statement that returns a value consistent with
the method’s return type. Returning a value from a
method whose return type has been declared void is a
compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.7

Casting a primitive-type value to another primitive type
may change the value if the new type is not a valid pro-
motion. For example, casting a floating-point value to
an integer value may introduce truncation errors (loss of
the fractional part) into the result.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

6.6 Method-Call Stack and Stack Frames

» Stack data structure
= Analogous to a pile of dishes

= A dish is placed on the pile at the top (referred to as pushing
the dish onto the stack).

= A dish is removed from the pile from the top (referred to as
popping the dish off the stack).

» Last-in, first-out (LIFO) data structures

= The last item pushed onto the stack is the first item popped
from the stack.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.6 Method-Call Stack and Activation
Records (Cont.)

» When a program calls a method, the called method must know

how to return to its caller
= The return address of the calling method is pushed onto the

method-call stack.
» If a series of method calls occurs, the successive return
addresses are pushed onto the stack in last-in, first-out order.
» The method call stack also contains the memory for the local
variables (including the method parameters) used in each
invocation of a method during a program’s execution.
= Stored as a portion of the method call stack known as the
stack frame (or activation record) of the method call.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.6 Method-Call Stack and Activation
Records (Cont.)

» When a method call is made, the stack frame for that
method call Is pushed onto the method call stack.

» When the method returns to its caller, the stack frame is
popped off the stack and those local variables are no
longer known to the program.

» If more method calls occur than can have their stack
frames stored on the program-execution stack, an error
known as a stack overflow occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.7 Argument Promotion and Casting

» Argument promotion

= Converting an argument’s value, if possible, to the type that the
method expects to receive in its corresponding parametetr.

» Conversions may lead to compilation errors 1f Java’s
promotion rules are not satisfied.

» Promotion rules
= specify which conversions are allowed.
= apply to expressions containing values of two or more primitive

types and to primitive-type values passed as arguments to methods.

» Each value 1s promoted to the “highest” type in the
expression.

» Figure 6.4 lists the primitive types and the types to which
each can be promoted.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

double
float
Tlong
int
char
short
byte

boolean

None

double

float or double

Tong, float or double

int, long, float or double

int, Tong, float or double (but not char)
short, int, long, float or double (but not char)

None (boolean values are not considered to be
numbers in Java)

Fig. 6.4 | Promotions allowed for primitive types.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.7 Argument Promotion and Casting
(Cont.)

» Converting values to types lower in the table of Fig. 6.4
will result in different values if the lower type cannot
represent the value of the higher type

» In cases where information may be lost due to
conversion, the Java compiler requires you to use a cast
operator to explicitly force the conversion to occur—
otherwise a compilation error occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.8 Java API| Packages

» Java contains many predefined classes that are grouped
Into categories of related classes called packages.

» A great strength of Java 1s the Java API’s thousands of
classes.

» Some key Java API packages that we use In this book
are described In Fig. 6.5.

» Overview of the packages in Java:

- http://docs.oracle.com/javase/7/docs/api/
overview-summary.html

- http://download. java.net/jdk8/docs/api/
overview-summary.html

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java

java

java.

java

java.

java

.awt.event

.awt.geom

io

.lang

net

.security

The Java Abstract Window Toolkit Event Package contains classes
and interfaces that enable event handling for GUI components in
both the java.awt and javax.swing packages. (See Chapter 12, GUI
Components: Part 1, and Chapter 22, GUI Components: Part 2.)

The Java 2D Shapes Package contains classes and interfaces for work-
ing with Java’s advanced two-dimensional graphics capabilities. (See

Chapter 13, Graphics and Java 2D.)

The Java Input/Output Package contains classes and interfaces that
enable programs to input and output data. (See Chapter 15, Files,
Streams and Object Serialization.)

The Java Language Package contains classes and interfaces (discussed
throughout the book) that are required by many Java programs. This
package is imported by the compiler into all programs.

The Java Networking Package contains classes and interfaces that
enable programs to communicate via computer networks like the
Internet. (See online Chapter 28, Networking.)

The Java Security Package contains classes and interfaces for enhanc-
ing application security.

Fig. 6.5 | Java APl packages (a subset). (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java.sql

Jjava.util

java.util.concurrent

javax.swing

javax.swing.event

The JDBC Package contains classes and interfaces for working with
databases. (See Chapter 24, Accessing Databases with JDBC.)

The Java Utilities Package contains utility classes and interfaces that
enable storing and processing of large amounts of data. Many of these
classes and interfaces have been updated to support Java SE 8’s new
lambda capabilities. (See Chapter 16, Generic Collections.)

The Java Concurrency Package contains utility classes and interfaces
for implementing programs that can perform multiple tasks in paral-
lel. (See Chapter 23, Concurrency.)

The Java Swing GUI Components Package contains classes and
interfaces for Java’s Swing GUI components that provide support for
portable GUIs. This package still uses some elements of the older
java.awt package. (See Chapter 12, GUI Components: Part 1, and
Chapter 22, GUI Components: Part 2.)

The Java Swing Event Package contains classes and interfaces that
enable event handling (e.g., responding to button clicks) for GUI
components in package javax.swing. (See Chapter 12, GUI Compo-
nents: Part 1, and Chapter 22, GUI Components: Part 2.)

Fig. 6.5 | Java APl packages (a subset). (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

javax.xml.ws The JAX-WS Package contains classes and interfaces for working with
web services in Java. (See online Chapter 32, REST-Based
Web Services.)

javafx packages JavaFX is the preferred GUI technology for the future. We discuss
these packages in Chapter 25, JavaFX GUI: Part 1 and in the online
JavaFX GUI and multimedia chapters.

Fig. 6.5 | Java APl packages (a subset). (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Some Java SE 8 Packages Used in This Book

java.time The new Java SE 8 Date/ Time API Package contains classes and
interfaces for working with dates and times. These features are
designed to replace the older date and time capabilities of package
java.util. (See Chapter 23, Concurrency.)

java.util.function and These packages contain classes and interfaces for working with Java
java.util.stream SE 8’s functional programming capabilities. (See Chapter 17, Java SE
8 Lambdas and Streams.)

Fig. 6.5 | Java APl packages (a subset). (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

6.9 Case Study: Secure Random-Number
Generation

» Simulation and game playing

= element of chance
= Class SecureRandom (package java.security)

» Such objects can produce random boolean, byte,
float, double, 1int, 1ong and Gaussian values

» SecureRandom objects produce nondeterministic
random numbers that cannot be predicted.

» Documentation for class SecureRandom

- docs.oracle.com/javase/7/docs/api/java/
security/SecureRandom.html

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.9 Case Study: Random-Number
Generation (Cont.)

» The range of values produced by SecureRandom
method nextInt often differs from the range of
values required in a particular Java application.

» SecureRandom method nextInt that receives an
1nt argument returns a value from 0 up to, but not
including, the argument’s value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.9 Case Study: Random-Number
Generation (Cont.)

Rolling a Six-Sided Die
= face = 1 + randomNumbers.nextInt(6);

» The argument 6—called the scaling factor—represents the
number of unigue values that nextInt should produce (0-5)

» This is called scaling the range of values
» A six-sided die has the numbers 1-6 on its faces, not 0-5.

» We shift the range of numbers produced by adding a shifting
value—In this case 1—to our previous result, as in

» The shifting value (1) specifies the first value in the desired
range of random integers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 6.6: RandomIntegers.java

2 // Shifted and scaled random 1integers.

3 import java.security.SecureRandom; // program uses class SecureRandom
4

5 public class RandomIntegers

6 {

7 public static void main(String[] args)

8 {

9 // randomNumbers object will produce secure random numbers

10 SecureRandom randomNumbers = new SecureRandom();

11

12 // Toop 20 times

13 for (int counter = 1; counter <= 20; counter++)

14 {

15 // pick random integer from 1 to 6

16 int face = 1 + randomNumbers.nextInt(6);

17

18 System.out.printf("%d ", face); // display generated value
19
20 // if counter 1is divisible by 5, start a new line of output
21 if (counter % 5 == 0)
22 System.out.println();
23 }
24 }

25 } // end class RandomIntegers

6.6 | Shifted and scaled random integers. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 5 3 o6 2
5 2 6 5 2
4 4 4 2 6
3 1 6 2 2
6 5 4 2 ©
1 2 5 1 3
6 3 2 2 1
6 4 2 6 4

Fig. 6.6 | Shifted and scaled random integers. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.9 Case Study: Random-Number
Generation (Cont.)

» Fig 6.7: Rolling a Six-Sided Die 6,000,000 Times

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 6.7: RollDie.java

2 // Roll a six-sided die 6,000,000 times.

3 import java.security.SecureRandom;

4

5 public class RollDie

6 {

7 public static void main(String[] args)

8 {

9 // randomNumbers object will produce secure random numbers
10 SecureRandom randomNumbers = new SecureRandom();
11
12 int frequencyl = 0; // count of 1s rolled

13 int frequency2 = 0; // count of 2s rolled

14 int frequency3 = 0; // count of 3s rolled

15 int frequency4 = 0; // count of 4s rolled

16 int frequency5 = 0; // count of 5s rolled

17 int frequency6 = 0; // count of 6s rolled

18

19 // tally counts for 6,000,000 rolls of a die
20 for (int roll = 1; roll <= 6000000; roll++)
21 {
22 int face = 1 + randomNumbers.nextInt(6); // number from 1 to 6
23

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 // use face value 1-6 to determine which counter to increment

25 switch (face)

26 {

27 case 1:

28 ++frequencyl; // increment the 1s counter
29 break;

30 case 2:

31 ++frequency2; // increment the 2s counter
32 break;

33 case 3:

34 ++frequency3; // increment the 3s counter
35 break;

36 case 4:

37 ++frequency4; // increment the 4s counter
38 break;

39 case 5:

40 ++frequency5; // increment the 5s counter
41 break;

42 case 6:

43 ++frequency6; // increment the 6s counter
44 break;

45 3

46 3

47

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

48 System.out.println("Face\tFrequency”); // output headers

49 System.out.printf ("1\thd%n2 \t%d%n3\td%nd\t%d%n 5\ t2%d%n6\t%d%n" ,
50 frequencyl, frequency2, frequency3, frequency4,
51 frequency5, frequency6);

52 }

53 1} // end class RollDie

Face Frequency

1 999501

2 1000412

3 098262

4 1000820

5 1002245

6 998760

Face Frequency

1 999647

2 999557

3 999571

4 1000376

5 1000701

o 1000148

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.10 Case Study: A Game of Chance;
Introducing enum Types

» Basic rules for the dice game Craps:

" You roll two dice. Each die has six faces, which contain one,
two, three, four, five and six spots, respectively. After the dice
have come to rest, the sum of the spots on the two upward
faces is calculated. If the sum is 7 or 11 on the first throw, you
win. If the sum is 2, 3 or 12 on the first throw (called “craps”),
you lose (i.e., the “house” wins). If the sumis 4,5, 6,8, 9or 10
on the first throw, that sum becomes your “point.” To win, you
must continue rolling the dice until you “make your point” (i.e.,
roll that same point value). You lose by rolling a 7 before
making your point.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 6.8: Craps.java

2 // Craps class simulates the dice game craps.

3 import java.security.SecureRandom;

4

5 public class Craps

6 {

7 // create secure random number generator for use in method rollDice
8 private static final SecureRandom randomNumbers = new SecureRandom();
9
10 // enum type with constants that represent the game status
11 private enum Status { CONTINUE, WON, LOST };
12
13 // constants that represent common rolls of the dice
14 private static final int SNAKE_EYES = 2;
15 private static final int TREY = 3;
16 private static final int SEVEN = 7;
17 private static final int YO_LEVEN = 11;
18 private static final int BOX_CARS = 12;
19

Fig. 6.8 | Craps class simulates the dice game craps. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// plays one game of craps

public static void main(String[] args)

{
int myPoint = 0; // point if no win or loss on first roll
Status gameStatus; // can contain CONTINUE, WON or LOST

int sumOfDice = roll1Dice(); // first roll of the dice

// determine game status and point based on first roll
switch (sumOfDice)
{
case SEVEN: // win with 7 on first roll
case YO_LEVEN: // win with 11 on first roll
gameStatus = Status.WON;
break;
case SNAKE_EYES: // lose with 2 on first roll
case TREY: // lose with 3 on first roll
case BOX_CARS: // lose with 12 on first roll
gameStatus = Status.LOST;
break;

Fig. 6.8 | Craps class simulates the dice game craps. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 default: // did not win or lose, so remember point

41 gameStatus = Status.CONTINUE; // game is not over
42 myPoint = sumOfDice; // remember the point

43 System.out.printf("Point is %d%n", myPoint);

44 break;

45 }

46

47 // while game 1is not complete

48 while (gameStatus == Status.CONTINUE) // not WON or LOST
49 {

50 sumOfDice = rollDice(); // roll dice again

51

52 // determine game status

53 if (sumQfDice == myPoint) // win by making point

54 gameStatus = Status.WON;

55 else

56 if (sumOfDice == SEVEN) // Tose by rolling 7 before point
57 gameStatus = Status.LOST;

58 }

59

Fig. 6.8 | Craps class simulates the dice game craps. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

60 // display won or lost message

61 if (gameStatus == Status.WON)

62 System.out.println("Player wins");

63 else

64 System.out.println("Player loses™);

65 }

66

67 // roll dice, calculate sum and display results

68 public static int roll1Dice()

69 {

70 // pick random die values

71 int diel = 1 + randomNumbers.nextInt(6); // first die roll
72 int die2 = 1 + randomNumbers.nextInt(6); // second die roll
73

74 int sum = diel + die2; // sum of die values

75

76 // display results of this roll

77 System.out.printf("Player rolled %d + %d = %d%n",
78 diel, die2, sum);

79

80 return sum;

8l }

82 1} // end class Craps

Fig. 6.8 | Craps class simulates the dice game craps. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Player rolled 5 + 6 = 11
Player wins

Player rolled 5 + 4 = 9
Point is 9

Player rolled 4 + 2 = 6
Player rolled 3 + 6 = 9

Player wins

Player rolled 1 + 2 = 3
Player loses

()]
I
oo

Player rolled 2 +
Point is 8
Player rolled 5 1
Player rolled 2 + 1
Player rolled 1 + 6
Player loses

o
~N WO

Fig. 6.8 | Craps class simulates the dice game craps. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.10 Case Study: A Game of Chance;
Introducing enum Types (Cont.)

» Notes:

= myPo1nt is initialized to 0 to ensure that the application will
compile.

= |f you do not initialize myPo1nt, the compiler issues an error,
because myPo1nt is not assigned a value in every case of
the swi tch statement, and thus the program could try to use
myPo1nt before it is assigned a value.

= gameStatus is assigned a value in every case of the
sw1 tch statement (including the default case)—thus, it’s
guaranteed to be 1nitialized before it’s used, so we do not need
to initialize it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.10 Case Study: A Game of Chance;
Introducing Enumerations (Cont.)

enumtype Status

» An enum type In its simplest form declares a set of constants
represented by identifiers.

» Special kind of class that is introduced by the keyword enum
and a type name.

» Braces delimit an enum declaration’s body.

» Inside the braces iIs a comma-separated list of enum constants,
each representing a unique value.

» The identifiers in an enum must be unique.

» Variables of an enum type can be assigned only the constants
declared in the enum.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

, Good Programming Practice 6. |

B Use only uppercase letters in the names of enum constants
to make them stand out and remind you that they re not
variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

, Good Programming Practice 6.2
| Using enum constants (like Status.WON, Sta-
tus.LOST and Status . CONTINUE) rather than literal

values (such as 0, 1 and 2) makes programs easier to reac

and maintain.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.10 Case Study: A Game of Chance;
Introducing Enumerations (Cont.)

Why Some Constants Are Not Defined as enum
Constants

» Java does not allow an 1nt to be compared to an enum
constant.

» Java does not provide an easy way to convert an 1nt value to
a particular enum constant.

» Translating an 1nt into an enum constant could be done with
a separate switch statement.

» This would be cumbersome and would not improve the
readability of the program (thus defeating the purpose of using
an enum).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.11 Scope of Declarations

» Declarations introduce names that can be used to refer
to such Java entities.

» The scope of a declaration is the portion of the program
that can refer to the declared entity by its name.

= Such an entity 1s said to be “in scope” for that portion of the
program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.11 Scope of Declarations (Cont.)

» Basic scope rules:

= The scope of a parameter declaration is the body of the method in
which the declaration appears.

= The scope of a local-variable declaration is from the point at which
the declaration appears to the end of that block.

= The scope of a local-variable declaration that appears in the
initialization section of a for statement’s header is the body of the
for statement and the other expressions in the header.

= A method or field’s scope is the entire body of the class.
» Any block may contain variable declarations.
» If a local variable or parameter in a method has the same

name as a field of the class, the field is hidden until the
block terminates execution—this is called shadowing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 6.9: Scope.java

2 // Scope class demonstrates field and local variable scopes.
3

4 public class Scope

5

6 // field that is accessible to all methods of this class
7 private static int x = 1;

8

9 // method main creates and initializes local variable x
10 // and calls methods uselLocalVariable and useField
11 public static void main(String[] args)
12 {

13 int x = 5; // method's local variable x shadows field x
14

15 System.out.printf("local x in main s %d%n", x);

16

17 uselLocalVariable(); // uselLocalVariable has local x

18 useField(); // useField uses class Scope's field x

19 uselocalVariable(); // uselocalVariable reinitializes local x
20 useField(); // class Scope's field x retains its value
21
22 System.out.printf("%nlocal x in main s %d%n", X);
23 }
24

Fig. 6.9 | Scope class demonstrates field and local-variable scopes. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // create and initialize local variable x during each call

26 public static void uselLocalVariable()

27 {

28 int x = 25; // initialized each time uselocalVariable is called
29

30 System.out.printf(

31 "%nTocal x on entering method uselocalVariable is %d%n", x);
32 ++x; // modifies this method's local variable x

33 System.out.printf(

34 "Tocal x before exiting method uselLocalVariable is %d%n", x);
35 }

36

37 // modify class Scope's field x during each call

38 public static void useField()

39 {

40 System.out.printf(

41 "%nfield x on entering method useField is %d%n", x);

42 X *= 10; // modifies class Scope's field x

43 System.out.printf(

44 "field x before exiting method useField is %d%n", x);

45 }

46 } // end class Scope

Fig. 6.9 | Scope class demonstrates field and local-variable scopes. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Jocal x in main 1is 5

local x on entering method uselLocalVariable is 25
Tocal x before exiting method uselLocalVariable is 26

field x on entering method useField is 1
field x before exiting method useField is 10

local x on entering method uselLocalVariable is 25
Tocal x before exiting method uselLocalVariable is 26

field x on entering method useField is 10
field x before exiting method useField is 100

Jocal x in main 1is 5

Fig. 6.9 | Scope class demonstrates field and local-variable scopes. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

gy Good Programming Practice 6.3
N’ c)
B Declare variables as close to where they’re first used as

possible.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.12 Method Overloading

» Method overloading
= Methods of the same name declared in the same class
= Must have different sets of parameters

» Compiler selects the appropriate method to call by examining the
number, types and order of the arguments in the call.

» Used to create several methods with the same name that perform
the same or similar tasks, but on different types or different
numbers of arguments.

» Literal integer values are treated as type 1nt, so the method call
in line 9 invokes the version of square that specifies an int
parameter.

» Literal floating-point values are treated as type doub1e, so the

method call in line 10 invokes the version of square that
specifies a doub 1 e parameter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 6.10: MethodOverload.java

2 // Overloaded method declarations.

3

4 public class MethodOverload

5 {

6 // test overloaded square methods

7 public static void main(String[] args)

8 {

9 System.out.printf("Square of integer 7 1is %d%n", square(7));
10 System.out.printf("Square of double 7.5 is %f%n", square(7.5));
11 }

12

13 // square method with int argument

14 public static int square(int intValue)

I5 {

16 System.out.printf("%nCalled square with int argument: %d%n",
17 intValue);

I8 return intValue * intValue;

19 }
20

Fig. 6.10 | Overloaded method declarations. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // square method with double argument

22 public static double square(double doubleValue)

23 {

24 System.out.printf("%nCalled square with double argument: %f%n",
25 doubleValue);

26 return doubleValue * doubleValue;

27 }

28 1} // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 is 56.250000

Fig. 6.10 | Overloaded method declarations. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.12 Method Overloading (cont.)

Distinguishing Between Overloaded Methods
4

The compiler distinguishes overloaded methods by their
signatures—the methods’ name and the number, types and
order of its parameters.

Return types of overloaded methods

= Method calls cannot be distinguished by return type.

Figure 6.10 illustrates the errors generated when two
methods have the same signature and different return types.

Overloaded methods can have different return types if the
methods have different parameter lists.

Overloaded methods need not have the same number of
parameters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 6.8

Declaring overloaded methods with identical parameter
lists is a compilation error regardless of whether the re-
turn types are different.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.13 (Optional) GUI and Graphics Case
Study: Colors and Filled Shapes

» Colors displayed on computer screens are defined by
their red, green, and blue components (called RGB
values) that have integer values from 0 to 255.

» The higher the value of a component color, the richer
that color’s shade will be.

» Java uses class Color (package java.awt) to
represent colors using their RGB values.

» Class Color contains various predefined static
Color objects—BLACK, BLUE, CYAN, DARK_GRAY,
GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE and YELLOW.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

6.13 (Optional) GUlI and Graphics Case
Study: Colors and Filled Shapes (Cont.)

» You can create custom colors by passing the red-,
green- and blue-component values to class Color’s
constructor:

- public Color(int r, 1nt g, 1nt b)

» Graphics methods fillRect and fillOval draw filled

rectangles and ovals, respectively.

» Graphics method setColor sets the current drawing
color.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 6.11: DrawSmiley.java

2 // Drawing a smiley face using colors and filled shapes.
3 import java.awt.Color;

4 import java.awt.Graphics;

5 dimport javax.swing.JPanel;

6

7 public class DrawSmiley extends JPanel
8 {

9 public void paintComponent(Graphics g)
10 {

11 super.paintComponent(g);

12

13 // draw the face

14 g.setColor(Color.YELLOW) ;

15 g.fi110val (10, 10, 200, 200);

16

17 // draw the eyes

18 g.setColor(Color.BLACK);

19 g.fi110val (55, 65, 30, 30);
20 g.fi110val (135, 65, 30, 30);
21
22 // draw the mouth
23 g.fil110val (50, 110, 120, 60);
24

Fig. 6.11 | Drawing a smiley face using colors and filled shapes. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // "touch up" the mouth into a smile

26 g.setColor(Color.YELLOW) ;

27 g.fi11Rect (50, 110, 120, 30);
28 g.fi110val (50, 120, 120, 40);
29 }

30 } // end class DrawSmiley

Fig. 6.11 | Drawing a smiley face using colors and filled shapes. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

17

// Fig. 6.12: DrawSmileyTest.java
// Test application that displays a smiley face.
import javax.swing.JFrame;

public class DrawSmileyTest

{

public static void main(String[] args)

{

DrawSmiley panel = new DrawSmiley();
JFrame application = new JFrame();

application.
application.
application.
application.

}

setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
add(panel);

setSize(230, 250);

setVisible(true);

} // end class DrawSmileyTest

Fig. 6.12 | Test application that displays a smiley face. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

E (=@ ==

® ©
——"

Fig. 6.12 | Testapplication that displays a smiley face. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Fig. 6.13 | Abulls-eye with two alternating, random colors,

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

F=3EoB X5

Fig. 6.14 | Randomly generated shapes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

