Chapter 9
Object-Oriented Programming:

Inheritance
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

Understand inheritance and how to use it to develop new classes based on existing classes.
Learn the notions of superclasses and subclasses and the relationship between them.

Use keyword extends to create a class that inherits attributes and behaviors from another
class.

Use access modifier protected in a superclass to give subclass methods access to these
superclass members.

Access superclass members with super from a subclass.
Learn how constructors are used in inheritance hierarchies.

Learn about the methods of class Object, the direct or indirect superclass of all classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members

9.4 Relationship Between Superclasses and Subclasses
9.4.1 Creating and Using a CommissionEmpTloyee Class

9.4.2 Creating and Using a BasePTusCommissionEmployee Class

9.4.3 Creating a CommissionEmployee-BasePTusCommissionEmployee Inheritance
Hierarchy

9.4.4 CommissionEmployee-BasePlusCommissionEmployee Inheritance Hierarchy Using
protected Instance Variables

9.4.5 CommissionEmployee-BasePlusCommissionEmployee Inheritance Hierarchy Using
private Instance Variables

9.5 Constructors in Subclasses
9.6 Class Object

9.7 (Optional) GUI and Graphics Case Study: Displaying Text and Images
Using Labels

9.8 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.1 Introduction

» Inheritance

= A new class is created by acquiring an existing class’s
members and possibly embellishing them with new or
modified capabilities.

= Can save time during program development by basing new

classes on existing proven and debugged high-quality software.

= Increases the likelihood that a system will be implemented and
maintained effectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.1 Introduction (Cont.)

» When creating a class, rather than declaring completely new
members, you can designate that the new class should
Inherit the members of an existing class.
= EXisting class is the superclass
= New class is the subclass

» Asubclass can be a superclass of future subclasses.

» Asubclass can add its own fields and methods.

» A subclass Is more specific than its superclass and
represents a more specialized group of objects.

» The subclass exhibits the behaviors of its superclass and can
add behaviors that are specific to the subclass.
= This is why inheritance is sometimes referred to as specialization.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.1 Introduction (Cont.)

» The direct superclass is the superclass from which the
subclass explicitly inherits.

» An indirect superclass Is any class above the direct
superclass in the class hierarchy.

» The Java class hierarchy begins with class Object (in

package java. lang)

= Every class in Java directly or indirectly extends (or “inherits
from”) Object.

» Java supports only single inheritance, in which each
class Is derived from exactly one direct superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.1 Introduction (Cont.)

» We distinguish between the is-a relationship and the
has-a relationship

» Is-a represents inheritance

= In an is-a relationship, an object of a subclass can also be
treated as an object of its superclass

» Has-a represents composition

= In a has-a relationship, an object contains as members
references to other objects

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.2 Superclasses and Subclasses

» Figure 9.1 lists several simple examples of superclasses

and subclasses
= Superclasses tend to be “more general” and subclasses “more

specific.”
» Because every subclass object is an object of its
superclass, and one superclass can have many
subclasses, the set of objects represented by a
superclass is typically larger than the set of objects

represented by any of its subclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, MortgagelLoan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

Fig. 9.1 | Inheritance examples.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

9.2 Superclasses and Subclasses (Cont.)

» Asuperclass exists in a hierarchical relationship with its
subclasses.

» Fig. 9.2 shows a sample university community class hierarchy
= Also called an inheritance hierarchy.

» Each arrow in the hierarchy represents an is-a relationship.

» Follow the arrows upward in the class hierarchy
= an Employee is a CommunityMember”
= “aTeacherisa Faculty member.”

» CommunityMember is the direct superclass of Emp1oyee,

Student and ATumnus and is an indirect superclass of all the
other classes in the diagram.

» Starting from the bottom, you can follow the arrows and apply
the is-a relationship up to the topmost superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

CommunityMember

Employee I Student I Alumnus I

Faculty I Staff I

Administrator I Teacher I

Fig. 9.2 | Inheritance hierarchy UML class diagram for university

CommunityMembers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

9.2 Superclasses and Subclasses (Cont.)

» Fig. 9.3 shows a Shape inheritance hierarchy.

» Van follow the arrows from t
to the topmost superclass in t
Identify several is-a relations

ne bottom of the diagram
nis class hierarchy to

Nips.

= ATriangleisaTwoDimensionalShapeandisa
Shape
= ASphereisaThreeDimensionalShape andis a
Shape.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle I Square I Triangle I Sphere I Cube I Tel:rahedronI

Fig. 9.3 | Inheritance hierarchy UML class diagram for Shapes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

9.2 Superclasses and Subclasses (Cont.)

» Not every class relationship Is an inheritance
relationship.

» Has-a relationship

= Create classes by composition of existing classes.

= Example: Given the classes Emp loyee, BirthDate and
TelephoneNumber, it’s improper to say that an Employee
isa B1rthDate or thatan Employeeisa
TelephoneNumber.

= However, an Employee has a B1rthDate, and an
Employee has a TelephoneNumber.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

9.2 Superclasses and Subclasses (Cont.)

» Objects of all classes that extend a common superclass
can be treated as objects of that superclass.
= Commonality expressed in the members of the superclass.

» Inheritance issue

= A subclass can inherit methods that it does not need or should
not have.

= Even when a superclass method is appropriate for a subclass,
that subclass often needs a customized version of the method.

= The subclass can override (redefine) the superclass method
with an appropriate implementation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.3 protected Members

» A class’s pub11¢c members are accessible wherever the

program has a reference to an object of that class or one of
Its subclasses.

» A class’s private members are accessible only within the
class itself.

» protected access Is an intermediate level of access between
public and private.

= A superclass’s protected members can be accessed by members

of that superclass, by members of its subclasses and by members of
other classes in the same package

- protected members also have package access.

= All publicand protected superclass members retain their
original access modifier when they become members of the subclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.3 protected Members (Cont.)

» A superclass’s private members are hidden from its
subclasses

= They can be accessed only through the pub1ic or protected
methods inherited from the superclass

» Subclass methods can refer to pub1ic and protected

members inherited from the superclass simply by using the
member names.

» When a subclass method overrides an inherited superclass
method, the superclass version of the method can be
accessed from the subclass by preceding the superclass
method name with keyword super and a dot (.) separator.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Ng Software Engineering Observation 9.1

R Methods of a subclass cannot directly access private
members of their superclass. A subclass can change the
state of private superclass instance variables only
through non-private methods provided in the
superclass and inberited by the subclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

< WA

ok

’,‘\g Software Engineering Observation 9.2

L e

Declaring private instance variables helps you test,
debug and correctly modify systems. If a subclass could
access its superclass’s private instance variables, classes
that inberit from that subclass could access the instance
variables as well. This would propagate access to what
should be private instance variables, and the benefits
of information hiding would be lost.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4 Relationship Between Superclasses
and Subclasses

» Inheritance hierarchy containing types of employees In
a company’s payroll application

» Commission employees are paid a percentage of their
sales

» Base-salaried commission employees receive a base
salary plus a percentage of their sales.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.1 Creating and Using a
commissionEmployee Class

» Class CommissionEmployee (Fig. 9.4) extends
class Object (from package java. lang).
= CommissionEmployee inherits Object’s methods.

= If you don’t explicitly specify which class a new class extends,
the class extends Object implicitly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.4: CommissionEmployee.java

2 // CommissionEmployee class represents an employee paid a
3 // percentage of gross sales.

4 public class CommissionEmployee extends Object

5 |

6 private final String firstName;

7 private final String lastName;

8 private final String socialSecurityNumber;

9 private double grossSales; // gross weekly sales
10 private double commissionRate; // commission percentage
11
12 // five-argument constructor

13 public CommissionEmployee(String firstName, String lastName,
14 String socialSecurityNumber, double grossSales,

15 double commissionRate)

16 {

17 // implicit call to Object's default constructor occurs here
18

19 // if grossSales 1is invalid throw exception
20 if (grossSales < 0.0)
21 throw new IllegalArgumentException(
22 "Gross sales must be >= 0.0");
23

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// if commissionRate is invalid throw exception
if (commissionRate <= 0.0 || commissionRate >= 1.0)
throw new I1legalArgumentException(
"Commission rate must be > 0.0 and < 1.0");

this.firstName = firstName;
this.lastName = lastName;
this.socialSecurityNumber = socialSecurityNumber;
this.grossSales = grossSales;
this.commissionRate = commissionRate;

} // end constructor

// return first name
public String getFirstName()
{

}

return firstName;

// return last name
public String getLastName()

{
}

return TastName;

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of

gross sales. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47

48 // return social security number

49 public String getSocialSecurityNumber()
50 {

51 return socialSecurityNumber;

52 }

53

54 // set gross sales amount

55 public void setGrossSales(double grossSales)
56 {

57 if (grossSales < 0.0)

58 throw new I1legalArgumentException(
59 "Gross sales must be >= 0.0");
60

61 this.grossSales = grossSales;

62 }

63

64 // return gross sales amount

65 public double getGrossSales()

66 {

67 return grossSales;

68 3

69

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

70 // set commission rate

71 public void setCommissionRate(double commissionRate)
72 {

73 if (commissionRate <= 0.0 || commissionRate >= 1.0)
74 throw new ITlegalArgumentException(

75 "Commission rate must be > 0.0 and < 1.0");
76

77 this.commissionRate = commissionRate;

78 }

79

80 // return commission rate

81 public double getCommissionRate()

82 {

83 return commissionRate;

84 }

85

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

86 // calculate earnings

87 public double earnings()

88 {

89 return commissionRate * grossSales;

90 }

91

92 // return String representation of CommissionEmployee object

93 @verride // indicates that this method overrides a superclass method
94 public String toString()

95 {

96 return String.format("%s: %s %skn%s: %sknks: %.2f%n%s: %.2f",
97 "commission employee”, firstName, lastName,

98 "social security number", socialSecurityNumber,

99 "gross sales", grossSales,

100 "commission rate", commissionRate);

101 }

102 } // end class CommissionEmployee

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.1 Creating and Using a
commissionEmployee Class (Cont.)

» Constructors are not inherited.

» The first task of a subclass constructor is to call its
direct superclass s constructor explicitly or implicitly

= Ensures that the instance variables inherited from the
superclass are initialized properly.

» If the code does not include an explicit call to the
superclass constructor, Java implicitly calls the
superclass’s default or no-argument constructor.

» A class’s default constructor calls the superclass’s
default or no-argument constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.1 Creating and Using a
commissionEmployee Class (Cont.)

» toString is one of the methods that every class
inherits directly or indirectly from class Object.
= Returns a String representing an object.

= Called implicitly whenever an object must be converted to a
String representation.

» Class Object’s toString method returns a
String that includes the name of the object’s class.

= This Is primarily a placeholder that can be overridden by a
subclass to specify an appropriate String representation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.1 Creating and Using a
commissionEmployee Class (Cont.)

» To override a superclass method, a subclass must
declare a method with the same signature as the
superclass method

» @Override annotation

= Indicates that a method should override a superclass method
with the same signature.

= If it does not, a compilation error occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 9.1

Though the @Override annotation is optional, declare
overridden methods with it to ensure at compilation
time that you defined their signatures correctly. It’s al-
ways better to find errors at compile time rather than at
runtime. For this reason, the toString methods in
Fig. 7.9 and in Chapter 8's examples should have been

declared with @verride.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 9.1

1t’s a compilation error to override a method with a more
restricted access modifier—a pub11ic superclass method
cannot become a protected or private subclass
method; a protected superclass method cannot become
a private subclass method. Doing so would break the
is-a relationship, which requires that all subclass objects
be able to respond to method calls made to pub1ic
methods declared in the superclass. If a pub11ic method,
could be overridden as a protected or private meth-
od, the subclass objects would not be able to respond to
the same method calls as superclass objects. Once a meth-
od is declared pub1ic in a superclass, the method re-
mains pub11ic for all that class’s direct and indirect
subclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.5: CommissionEmployeeTest.java

2 // CommissionEmployee class test program.

3

4 public class CommissionEmployeeTest

5 |

6 public static void main(String[] args)

7 {

8 // instantiate CommissionEmployee object

9 CommissionEmployee employee = new CommissionEmployee(
10 "Sue", "Jones", "222-22-2222", 10000, .06);

11

12 // get commission employee data

13 System.out.printin(

14 "Employee information obtained by get methods:");
15 System.out.printf("%n%s %s%n", "First name is",

16 employee.getFirstName()) ;

17 System.out.printf("%s %s%n", "Last name is",

18 employee.getlLastName());

19 System.out.printf("%s %s%n", "Social security number is",
20 employee.getSocialSecurityNumber());
21 System.out.printf("%s %.2f%n", "Gross sales is",
22 employee.getGrossSales());
23 System.out.printf("%s %.2f%n", "Commission rate is",
24 employee.getCommissionRate());

Fig. 9.5 | CommissionEmployee class test program. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 employee.setGrossSales(5000);

27 employee.setCommissionRate(.1);

28

29 System.out.printf("%n%s:%n%n%s%n’,

30 "Updated employee information obtained by toString”, employee);
31 } // end main

32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales 1is 10000.00

Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 5000.00

commission rate: 0.10

Fig. 9.5 | CommissionEmployee class test program. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.2 Creating and Using a BasePlus-
commissionEmployee Class

» Class BasePlusCommissionEmployee (Fig. 9.6)
contains a first name, last name, social security number,
gross sales amount, commission rate and base salary.

= All but the base salary are in common with class
commissionEmployee.

» Class BasePlusCommissionEmployee’s
pub 11 c services include a constructor, and methods
earnings, toString and get and set for each
Instance variable

= Most of these are in common with class
CommissionEmployee.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.6: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee class represents an employee who receives
3 // a base salary in addition to commission.

4

5 public class BasePlusCommissionEmployee

6 {

7 private final String firstName;

8 private final String lastName;

9 private final String socialSecurityNumber;
10 private double grossSales; // gross weekly sales
11 private double commissionRate; // commission percentage
12 private double baseSalary; // base salary per week

13

14 // six-argument constructor

15 public BasePlusCommissionEmployee(String firstName, String lastName,
16 String socialSecurityNumber, double grossSales,

17 double commissionRate, double baseSalary)

18 {

19 // implicit call to Object's default constructor occurs here
20
21 // if grossSales 1is invalid throw exception
22 if (grossSales < 0.0)
23 throw new IllegalArgumentException(
24 "Gross sales must be >= 0.0");

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who

a base salary in addition to a commission. (Part | of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 // if commissionRate 1is invalid throw exception
27 if (commissionRate <= 0.0 || commissionRate >= 1.0)
28 throw new IllegalArgumentException(

29 "Commission rate must be > 0.0 and < 1.0");
30

31 // if baseSalary is invalid throw exception

32 if (baseSalary < 0.0)

33 throw new ITlegalArgumentException(

34 "Base salary must be >= 0.0");

35

36 this.firstName = firstName;

37 this.lastName = lastName;

38 this.socialSecurityNumber = socialSecurityNumber;
39 this.grossSales = grossSales;

40 this.commissionRate = commissionRate;

41 this.baseSalary = baseSalary;

42 } // end constructor

43

44 // return first name

45 public String getFirstName()

46 {

47 return firstName;

48 }

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
gives a base salary in addition to a commission. (Part 2 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

49

50 // return last name

51 public String getLastName()

52 {

53 return lTastName;

54 }

55

56 // return social security number

57 public String getSocialSecurityNumber()
58 {

59 return socialSecurityNumber;

60 }

61

62 // set gross sales amount

63 public void setGrossSales(double grossSales)
64 {

65 if (grossSales < 0.0)

66 throw new I1legalArgumentException(
67 "Gross sales must be >= 0.0");
68

69 this.grossSales = grossSales;

70 }

71

Fig. 9.6 | BasePTusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 3 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

72 // return gross sales amount

73 public double getGrossSales()

74 {

75 return grossSales;

76 }

77

78 // set commission rate

79 public void setCommissionRate(double commissionRate)
80 {

81 if (commissionRate <= 0.0 || commissionRate >= 1.0)
82 throw new I1legalArgumentException(

83 "Commission rate must be > 0.0 and < 1.0");
84

85 this.commissionRate = commissionRate;

86 }

87

88 // return commission rate

89 public double getCommissionRate()

90 {

91 return commissionRate;

92 }

93

Fig. 9.6 | BasePTusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 4 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

94 // set base salary

95 public void setBaseSalary(double baseSalary)
96 {

97 if (baseSalary < 0.0)

98 throw new IllegalArgumentException(
99 "Base salary must be >= 0.0");
100

101 this.baseSalary = baseSalary;

102 }

103

104 // return base salary

105 public double getBaseSalary()

106 {

107 return baseSalary;

108 }

109

110 // calculate earnings

1l public double earnings()

112 {

13 return baseSalary + (commissionRate * grossSales);
114 }

115

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 5 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

116 // return String representation of BasePlusCommissionEmployee

117 @lverride

118 public String toString()

119 {

120 return String.format(

121 "%s: %S %sknY%s: %skn%s: %.2T%n%s: %.2f%n¥%s: %.2f",

122 "base-salaried commission employee”, firstName, lastName,

123 "social security number", socialSecurityNumber,

124 "gross sales", grossSales, "commission rate", commissionRate,
125 "base salary"”, baseSalary);

126 }

127 } // end class BasePlusCommissionEmployee

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 6 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.2 Creating and Using a BasePlus-
commissionEmployee Class (Cont.)

» Class BasePlusCommissionEmployee does not
specify “extends Object”
= Implicitly extends Object.

» BasePlusCommissionEmployee’s constructor
invokes class Object’s default constructor implicitly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.7: BasePlusCommissionEmployeeTest.java

2 // BasePlusCommissionEmployee test program.

3

4 public class BasePlusCommissionEmployeeTest

5 |

6 public static void main(String[] args)

7 {

8 // instantiate BasePlusCommissionEmployee object
9 BasePlusCommissionEmployee employee =

10 new BasePlusCommissionEmployee(

11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
12

13 // get base-salaried commission employee data

14 System.out.printin(

15 "Employee 1information obtained by get methods:%n");
16 System.out.printf("%s %s%n", "First name 1is",

17 employee.getFirstName());

18 System.out.printf("%s %s%n", "Last name 1is",

19 employee.getlLastName());
20 System.out.printf("%s %s%n", "Social security number is",
21 employee.getSocialSecurityNumber());
22 System.out.printf("%s %.2f%n", "Gross sales is",
23 employee.getGrossSales());

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 System.out.printf("%s %.2f%n", "Commission rate is",

25 employee.getCommissionRate());

26 System.out.printf("%s %.2f%n", "Base salary 1is",

27 employee.getBaseSalary());

28

29 employee.setBaseSalary(1000);

30

31 System.out.printf("%n%s :%n%n%s%n",

32 "Updated employee information obtained by toString",
33 employee. toString());

34 } // end main

35 } // end class BasePlusCommissionEmployeeTest

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Employee information obtained by get methods:

First name 1is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.2 Creating and Using a BasePlus-
CommissionEmployee Class (Cont.)

» Much of BasePlusCommissionEmployee’s code is
similar, or identical, to that of CommissionEmployee.

» private instance variables firstName and TastName
and methods setFirstName, getFirstName,
setLastName and getLastName are identical.
= Both classes also contain corresponding get and set methods.

» The constructors are almost identical
= BasePlusCommissionEmployee’s constructor also sets the
baseSalary.
» The toString methods are almost identical

= BasePlusCommissionEmployee’s toString also outputs
instance variable baseSalary

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.2 Creating and Using a BasePlus-
CommissionEmployee Class (Cont.)

» We literally copied CommissionEmployee’s code,
pasted it into BasePlusCommissionEmployee,
then modified the new class to include a base salary
and methods that manipulate the base salary.

= This “copy-and-paste” approach is often error prone and time
consuming.

= It spreads copies of the same code throughout a system,

creating a code-maintenance problems—changes to the code
would need to be made in multiple classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hEZ Software Engineering Observation 9.3
BN With inberitance, the instance variables and methods

that are the same for all the classes in the hierarchy are
declared in a superclass. Changes made to these common
features in the superclass are inberited by the subclass.
Without inheritance, changes would need to be made to
all the source-code files that contain a copy of the code in
question.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.3 Creating a CommissionEmployee- =

BasePlusCommissionEmployee
Inheritance Hierarchy

» Class BasePlusCommissionEmployee class extends
class CommissionEmployee

» ABasePlusCommissionEmployee objectis a
CommissionEmployee
= Inheritance passes on class CommissionEmployee’s capabilities.

» Class BasePlusCommissionEmployee also has
instance variable baseSalary.

» Subclass BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and
methods

= Only CommissionEmployee’s publicand protected
members are directly accessible in the subclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hEZ Software Engineering Observation 9.4

BN At the design stage in an object-oriented system, you'l]
often find that certain classes are closely related. You
should “factor out” common instance variables and
methods and place them in a superclass. Then use
inheritance to develop subclasses, specializing them with
capabilities beyond those inberited from the superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

x» Software Engineering Observation 9.5
Declaring a subclass does not affect its superclass’s source
code. Inheritance preserves the integrity of the superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.8: BasePlusCommissionEmployee.java

2 // private superclass members cannot be accessed in a subclass.

3

4 public class BasePlusCommissionEmployee extends CommissionEmployee
5 |

6 private double baseSalary; // base salary per week

7

8 // six-argument constructor

9 public BasePlusCommissionEmployee(String firstName, String lastName,
10 String socialSecurityNumber, double grossSales,

11 double commissionRate, double baseSalary)

12 {

13 // explicit call to superclass CommissionEmployee constructor
14 super(firstName, lastName, socialSecurityNumber,

15 grossSales, commissionRate);

16

17 // 1f baseSalary is invalid throw exception

18 if (baseSalary < 0.0)

19 throw new ITlegalArgumentException(
20 "Base salary must be >= 0.0");
21
22 this.baseSalary = baseSalary;
23 }

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part | of
5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // set base salary

26 public void setBaseSalary(double baseSalary)
27 {

28 if (baseSalary < 0.0)

29 throw new IllegalArgumentException(
30 "Base salary must be >= 0.0");

31

32 this.baseSalary = baseSalary;

33 }

34

35 // return base salary

36 public double getBaseSalary()

37 {

38 return baseSalary;

39 }

40

41 // calculate earnings

42 @verride

43 public double earnings()

44 {

45 // not allowed: commissionRate and grossSales private in superclass
46 return baseSalary + (commissionRate * grossSales);
47 }

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 2 of

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

48

49 // return String representation of BasePlusCommissionEmployee

50 @verride

51 public String toString()

52 {

53 // not allowed: attempts to access private superclass members
54 return String.format(

55 "%s: %S %skn%s: %skn¥%s: %.2f%n%s: %.2f%n%s: %.2f",

56 "base-salaried commission employee”, firstName, lastName,
57 "social security number", socialSecurityNumber,

58 "gross sales”, grossSales, "commission rate", commissionRate,
59 "base salary", baseSalary);

60 }

61 } // end class BasePlusCommissionEmployee

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 3 of
5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

BasePlusCommissionEmployee.java:46: error: commissionRate has private access
in CommissionEmployee

return baseSalary + (commissionRate * grossSales);

A

BasePlusCommissionEmployee.java:46: error: grossSales has private access 1in
CommissionEmployee

return baseSalary + (commissionRate * grossSales);

A

BasePlusCommissionEmployee.java:56: error: firstName has private access in
CommissionEmployee

"base-salaried commission employee™, firstName, TastName,
A

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 4 of
5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

BasePlusCommissionEmployee.java:56: error: lastName has private access 1in
CommissionEmployee

"base-salaried commission employee", firstName, lastName,

A

BasePlusCommissionEmployee.java:57: error: socialSecurityNumber has private
access in CommissionEmployee

"social security number"”, socialSecurityNumber,

A

BasePlusCommissionEmployee.java:58: error: grossSales has private access 1in
CommissionEmployee

"gross sales", grossSales, "commission rate", commissionRate,

A

BasePlusCommissionEmployee.java:58: error: commissionRate has private access

inCommissionEmployee
"gross sales", grossSales, "commission rate", commissionRate,
A

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 5 of
5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.3 Creating a CommissionEmployee- <

BasePlusCommissionEmployee

Inheritance Hierarchy (Cont.)

» Each subclass constructor must implicitly or explicitly call
one of its superclass’s constructors to initialize the instance

variables inherited from the superclass.

= Superclass constructor call syntax—keyword super, followed by a
set of parentheses containing the superclass constructor arguments.

= Must be the first statement in the constructor’s body.

» If the subclass constructor did not invoke the superclass’s
constructor explicitly, the compiler would attempt to insert
a call to the superclass’s default or no-argument constructor.

= Class CommissionEmployee does not have such a constructor,
so the compiler would issue an error.

» You can explicitly use super () to call the superclass’s
no-argument or default constructor, but this is rarely done.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

P,m, Software Engineering Observation 9.6

BE8X You learned previously that you should not call a class’s
instance methods from its constructors and that we’ll say
why in Chapter 10. Calling a superclass constructor
from a subclass constructor does not contradict this
advice.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.3 Creatinga CommissionEmployee- <
BasePlusCommissionEmployee
Inheritance Hierarchy (Cont.)

» Compilation errors occur when the subclass attempts to
access the superclass’s private instance variables.

» These lines could have used appropriate get methods to
retrieve the values of the superclass’s instance
variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.4 CommissionEmployee- ~
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Instance Variables

» To enable a subclass to directly access superclass instance
variables, we can declare those members as protected in
the superclass.

» New CommissionEmployee class modified only lines
6-10 of Fig. 9.4 as follows:

protected final String firstName;

protected final String lastName;

protected final String socialSecurityNumber;
protected double grossSales;

protected double commissionRate;

» With protected instance variables, the subclass gets
access to the instance variables, but classes that are not
subclasses and classes that are not in the same package
cannot access these variables directly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.4 CommissionEmployee-BasePlus- <
commissionEmployee Inheritance Hierarchy Using
protected Instance Variables (Cont.)

» Class BasePlusCommissionEmployee (Fig. 9.9) extends
the new version of class CommissionEmployee with
protected instance variables.
= These variables are now protected members of

BasePlusCommissionEmployee.

» If another class extends this version of class
BasePlusCommissionEmployee, the new subclass also
can access the protected members.

» The source code in Fig. 9.9 (59 lines) is considerably shorter than

that in Fig. 9.6 (127 lines)

= Most of the functionality is now inherited from
CcommissionEmployee
= There is now only one copy of the functionality.

= Code Is easier to maintain, modify and debug—the code related to a
commissionEmployee existsonly in that class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.9: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee inherits protected instance
3 // variables from CommissionEmployee.

4

5 public class BasePlusCommissionEmployee extends CommissionEmployee
6 {

7 private double baseSalary; // base salary per week

8

9 // six-argument constructor

10 public BasePlusCommissionEmployee(String firstName, String lastName,
11 String socialSecurityNumber, double grossSales,

12 double commissionRate, double baseSalary)

13 {

14 super(firstName, lastName, socialSecurityNumber,

15 grossSales, commissionRate);

16

17 // 1f baseSalary is invalid throw exception

18 if (baseSalary < 0.0)

19 throw new ITlegalArgumentException(
20 "Base salary must be >= 0.0");
21
22 this.baseSalary = baseSalary;
23 }

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // set base salary

26 public void setBaseSalary(double baseSalary)
27 {

28 if (baseSalary < 0.0)

29 throw new IllegalArgumentException(
30 "Base salary must be >= 0.0");

31

32 this.baseSalary = baseSalary;

33 }

34

35 // return base salary

36 public double getBaseSalary()

37 {

38 return baseSalary;

39 }

40

41 // calculate earnings

42 @Jverride // indicates that this method overrides a superclass method
43 public double earnings()

44 {

45 return baseSalary + (commissionRate * grossSales);
46 }

Fig. 9.9 | BasePTusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47

48 // return String representation of BasePlusCommissionEmployee
49 @lverride

50 public String toString()

51 {

52 return String.format(

53 "%s: %S %sknY%s: %skn%s: %.2f%n%s: %.2f%n¥%s: %.2f",

54 "base-salaried commission employee”, firstName, lastName,
55 "social security number"”, socialSecurityNumber,

56 "gross sales", grossSales, "commission rate", commissionRate,
57 "base salary", baseSalary);

58 }

59 1} // end class BasePlusCommissionEmployee

Fig. 9.9 | BasePTusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.4 CommissionEmployee-BasePlus- ~

commissionEmployee Inheritance Hierarchy Using

protected Instance Variables (Cont.)

» Inheriting protected instance variables enables
direct access to the variables by subclasses.

» In most cases, it’s better to use private instance
variables to encourage proper software engineering.
= Code will be easier to maintain, modify and debug.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.4 CommissionEmployee-BasePlus- ~
commissionEmployee Inheritance Hierarchy Using
protected Instance Variables (Cont.)

» Using protected instance variables creates several
potential problems.

» The subclass object can set an inherited variable’s value
directly without using a set method.
= A subclass object can assign an invalid value to the variable

» Subclass methods are more likely to be written so that

they depend on the superclass’s data implementation.

= Subclasses should depend only on the superclass services and
not on the superclass data implementation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.4 CommissionEmployee-BasePlus- ~
commissionEmployee Inheritance Hierarchy Using
protected Instance Variables (Cont.)
» With protected instance variables in the superclass,
we may need to modify all the subclasses of the

superclass if the superclass implementation changes.

= Such a class is said to be fragile or brittle, because a small
change 1n the superclass can “break” subclass implementation.

= You should be able to change the superclass implementation
while still providing the same services to the subclasses.

= If the superclass services change, we must reimplement our
subclasses.

» A class’s protected members are visible to all
classes in the same package as the class containing the
protected members—this is not always desirable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Nz Software Engineering Observation 9.7

e . Use the protected access modifier when a superclass
should provide a method only to its subclasses and other
classes in the same package, but not to other clients.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

pgg Software Engineering Observation 9.8

8 Declaring superclass instance variables private (as
opposed to protected) enables the superclass
implementation of these instance variables to change
without affecting subclass implementations.

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 9.2

When possible, do not include protected instance
variables in a superclass. Instead, include non-private
methods that access private instance variables. This
will help ensure that objects of the class maintain consis-

tent states.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.5 CommissionEmployee-BasePlus- <

commissionEmployee Inheritance Hierarchy Using
private Instance Variables

» Class Comm1ssionEmployee declares instance
variables f1rstName, lastName,
socialSecurityNumber, grossSales and
commissionRate as privateand provides
pub 11 c methods for manipulating these values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.5 CommissionEmployee-BasePlus- <
commissionEmployee Inheritance Hierarchy Using

private Instance Variables (Cont.)

» CommissionEmployee methods earnings and
toString use the class’s get methods to obtain the values
of Its instance variables.

= If we decide to change the internal representation of the data (e.g.,
variable names) only the bodies of the get and set methods that
directly manipulate the instance variables will need to change.

= These changes occur solely within the superclass-—no changes to
the subclass are needed.

= Localizing the effects of changes like this is a good software
engineering practice.

» Subclass BasePlusCommissionEmployee inherits
commission-Employee’s non-private methods and
can access the private superclass members via those
methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 9.10: CommissionEmployee.java

2 // CommissionEmployee class uses methods to manipulate 1its
3 // private instance variables.

4 public class CommissionEmployee

5 |

6 private final String firstName;

7 private final String lastName;

8 private final String socialSecurityNumber;

9 private double grossSales; // gross weekly sales
10 private double commissionRate; // commission percentage
11
12 // five-argument constructor

13 public CommissionEmployee(String firstName, String lastName,
14 String socialSecurityNumber, double grossSales,

15 double commissionRate)

16 {

17 // implicit call to Object constructor occurs here
18

19 // if grossSales 1is invalid throw exception
20 if (grossSales < 0.0)
21 throw new IllegalArgumentException(
22 "Gross sales must be >= 0.0");
23

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 // if commissionRate 1is invalid throw exception

25 if (commissionRate <= 0.0 || commissionRate >= 1.0)
26 throw new I1legalArgumentException(

27 "Commission rate must be > 0.0 and < 1.0");
28

29 this.firstName = firstName;

30 this.lastName = lastName;

31 this.socialSecurityNumber = socialSecurityNumber;
32 this.grossSales = grossSales;

33 this.commissionRate = commissionRate;

34 } // end constructor

35

36 // return first name

37 public String getFirstName()

38 {

39 return firstName;

40 }

41

42 // return last name

43 public String getLastName()

44 {

45 return TastName;

46 }

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

// return social security number
public String getSocialSecurityNumber()
{

return socialSecurityNumber;

}

// set gross sales amount
public void setGrossSales(double grossSales)

{
if (grossSales < 0.0)
throw new I1legalArgumentException(
"Gross sales must be >= 0.0");
this.grossSales = grossSales;
}

// return gross sales amount
public double getGrossSales()
{

}

return grossSales;

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

70 // set commission rate

71 public void setCommissionRate(double commissionRate)
72 {

73 if (commissionRate <= 0.0 || commissionRate >= 1.0)
74 throw new ITlegalArgumentException(

75 "Commission rate must be > 0.0 and < 1.0");
76

77 this.commissionRate = commissionRate;

78 }

79

80 // return commission rate

81 public double getCommissionRate()

82 {

83 return commissionRate;

84 }

85

86 // calculate earnings

87 public double earnings()

88 {

89 return getCommissionRate() * getGrossSales();

90 }

91

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

92 // return String representation of CommissionEmployee object

93 @verride

94 public String toString()

95 {

96 return String.format("%s: %s %sWn%s: %swkn%s: %.2f%n%s: %.2f",
97 "commission employee", getFirstName(), getlLastName(),

98 "social security number”, getSocialSecurityNumber(),

99 "gross sales", getGrossSales(),

100 "commission rate", getCommissionRate());

101 }

102 } // end class CommissionEmployee

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.5 CommissionEmployee-BasePlus- <
commissionEmployee Inheritance Hierarchy Using
private Instance Variables (Cont.)
» Class BasePlusCommissionEmployee
(Fig. 9.11) has several changes that distinguish it from
Fig. 9.9.
» Methods earnings and toString each invoke
their superclass versions and do not access instance
variables directly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 9.11: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited

4 // public methods.

5

6 public class BasePlusCommissionEmployee extends CommissionEmployee

7 {

8 private double baseSalary; // base salary per week

9

10 // six-argument constructor

11 public BasePlTusCommissionEmployee(String firstName, String TastName,
12 String socialSecurityNumber, double grossSales,

13 double commissionRate, double baseSalary)

14 {

15 super(firstName, lastName, socialSecurityNumber,

16 grossSales, commissionRate);

17

Fig. 9.11 | BasePlusCommissionEmployee class inherits from
CommissionEmployee and accesses the superclass’s private data via inherited
pub1ic methods. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I8 // if baseSalary 1is invalid throw exception

19 if (baseSalary < 0.0)

20 throw new I1legalArgumentException(
21 "Base salary must be >= 0.0");
22

23 this.baseSalary = baseSalary;

24 }

25

26 // set base salary

27 public void setBaseSalary(double baseSalary)
28 {

29 if (baseSalary < 0.0)

30 throw new ITlegalArgumentException(
31 "Base salary must be >= 0.0");
32

33 this.baseSalary = baseSalary;

34 }

35

Fig. 9.11 | BaseP1lusCommissionEmployee class inherits from
CommissionEmployee and accesses the superclass’s private data via inherited
pub1ic methods. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

36 // return base salary

37 public double getBaseSalary()

38 {

39 return baseSalary;

40 }

41

42 // calculate earnings

43 @verride

44 public double earnings()

45 {

46 return getBaseSalary() + super.earnings();

47 }

48

49 // return String representation of BasePlusCommissionEmployee
50 @verride

51 public String toString()

52 {

53 return String.format("%s %s¥%n%s: %.2f", "base-salaried",
54 super.toString(), "base salary"”, getBaseSalary());

55 }

56 1} // end class BasePlusCommissionEmployee

Fig. 9.11 | BasePlusCommissionEmployee class inherits from
CommissionEmployee and accesses the superclass’s private data via inherited
pub1ic methods. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.5 CommissionEmployee-BasePlus- ~

commissionEmployee Inheritance Hierarchy Using
private Instance Variables (Cont.)

» Method earnings overrides class the superclass’s
earnings methoc

» The new version calls CommissionEmployee’s
earnings method with super.earnings().
= Obtains the earnings based on commission alone

» Placing the keyword super and a dot (.) separator
before the superclass method name invokes the
superclass version of an overridden method.

» Good software engineering practice

= |f a method performs all or some of the actions needed by
another method, call that method rather than duplicate its code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 9.2

When a superclass method is overridden in a subclass, the
subclass version often calls the superclass version to do a
portion of the work. Failure to prefix the superclass meth-
od name with the keyword super and the dot (.) sepa-
rator when calling the superclass’s method causes the
subclass method to call itself, potentially creating an error
called infinite recursion, which would eventually cause
the method-call stack to overflow—a fatal runtime er-
ror. Recursion, used correctly, is a powerful capability
discussed in Chapter 18.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.4.5 CommissionEmployee-BasePlus- ~
commissionEmployee Inheritance Hierarchy Using
private Instance Variables (Cont.)

» BasePlusCommissionEmployee’s toString
method overrides class CommissionEmployee’s
toString method.

» The new version creates part of the String
representation by calling CommissionEmployee’s
toString method with the expression
super.toString().

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.5 Constructors in Subclasses

» Instantiating a subclass object begins a chain of constructor

calls

= The subclass constructor, before performing its own tasks, explicitly
uses super to call one of the constructors in its direct superclass or
implicitly calls the superclass’s default or no-argument constructor

» If the superclass Is derived from another class, the
superclass constructor invokes the constructor of the next
class up the hierarchy, and so on.

» The last constructor called in the chain is always Object’s
constructor.

» Original subclass constructor’s body finishes executing last.

» Each superclass’s constructor manipulates the superclass

Instance variables that the subclass object inherits.

AR

AN \ N\ ~
K
\ A\

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

pgg Software Engineering Observation 9.9

BN Java ensures that even if a constructor does not assign a
value to an instance variable, the variable is still
initialized to its default value (e.g., 0 for primitive
numeric types, false for booleans, null for
references).

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.6 Class Object

» All classes in Java inherit directly or indirectly from class
Object, so its 11 methods are inherited by all other classes.

» Figure 9.12 summarizes Object’s methods.

» Every array has an overridden c 1one method that copies the
array.

= If the array stores references to objects, the objects are not copied—a
shallow copy is performed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

equals This method compares two objects for equality and returns true if they’re equal
and false otherwise. The method takes any Object as an argument. When
objects of a particular class must be compared for equality, the class should over-
ride method equals to compare the contents of the two objects. For the require-
ments of implementing this method (which include also overriding method
hashCode), refer to the method’s documentation at docs.oracle.com/javase/7/
docs/api/java/lang/Object.html#equals(java.lang.Object). The default
equals implementation uses operator == to determine whether two references refer
to the same object in memory. Section 14.3.3 demonstrates class String’s equals
method and differentiates between comparing String objects with == and with
equals.

hashCode Hashcodes are int values used for high-speed storage and retrieval of information
stored in a data structure that’s known as a hashtable (see Section 16.11). This
method is also called as part of Object’s default toString method implementa-
tion.

Fig. 9.12 | Object methods. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

toString

wait, notify,
notifyAll

getClass

finalize

This method (introduced in Section 9.4.1) returns a String representation of an
object. The default implementation of this method returns the package name and
class name of the object’s class typically followed by a hexadecimal representation
of the value returned by the object’s hashCode method.

Methods noti fy, notifyAl1 and the three overloaded versions of wait are related
to multithreading, which is discussed in Chapter 23.

Every object in Java knows its own type at execution time. Method getClass
(used in Sections 10.5 and 12.5) returns an object of class C1ass (package
java.lang) that contains information about the object’s type, such as its class
name (returned by Class method getName).

This protected method is called by the garbage collector to perform termination
housekeeping on an object just before the garbage collector reclaims the object’s
memory. Recall from Section 8.10 that it’s unclear whether, or when, finalize
will be called. For this reason, most programmers should avoid method finalize.

Fig. 9.12 | Object methods. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

clone This protected method, which takes no arguments and returns an Object refer-
ence, makes a copy of the object on which it’s called. The default implementation
performs a so-called shallow copy—instance-variable values in one object are
copied into another object of the same type. For reference types, only the refer-
ences are copied. A typical overridden clone method’s implementation would
perform a deep copy that creates a new object for each reference-type instance
variable. fmplementing clone correctly is difficult. For this reason, its use is discour-
aged. Some industry experts suggest that object serialization should be used
instead. We discuss object serialization in Chapter 15. Recall from Chapter 7 that
arrays are objects. As a result, like all other objects, arrays inherit the members of
class Object. Every array has an overridden clone method that copies the array.
However, if the array stores references to objects, the objects are not copied—a
shallow copy is performed.

Fig. 9.12 | Object methods. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

9.7 (Optional) GUI and Graphics Case Study:
Displaying Text and Images Using Labels

» Labels are a convenient way of identifying GUI
components on the screen and keeping the user
Informed about the current state of the program.

» AlLabel (from package javax.sw1ing) can display
text, an image or both.
» The example in Fig. 9.13 demonstrates several

JLabe features, including a plain text label, an image
label and a label with both text and an image.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig 9.13: LabelDemo.java

2 // Demonstrates the use of labels.

3 dimport java.awt.BorderlLayout;

4 dimport javax.swing.Imagelcon;

5 dimport javax.swing.JLabel;

6 import javax.swing.JFrame;

7

8 public class LabelDemo

9 {

10 public static void main(String[] args)

11 {

12 // Create a label with plain text

13 JLabel northlLabel = new JLabel("North");

14

I5 // create an icon from an image so we can put it on a JLabel
16 Imagelcon labellcon = new Imagelcon("GUItip.gif");
17

18 // create a label with an Icon instead of text
19 JLabel centerlLabel = new JLabel(labelIcon);
20
21 // create another Tabel with an Icon
22 JLabel southLabel = new JLabel(labelIcon);
23

Fig. 9.13 | JLabel with text and with images. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 // set the label to display text (as well as an icon)

25 southlLabel.setText("South”);

26

27 // create a frame to hold the Tlabels

28 JFrame application = new JFrame();

29

30 application.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
31

32 // add the labels to the frame; the second argument specifies
33 // where on the frame to add the Tabel

34 application.add(northLabel, BorderlLayout.NORTH);

35 application.add(centerLabel, BorderLayout.CENTER);

36 application.add(southlLabel, Borderlayout.SOUTH);

37

38 application.setSize(300, 300);

39 application.setVisible(true);

40 } // end main

41 } // end class LabelDemo

Fig. 9.13 | JLabel with text and with images. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

E [F=5EoR (xS

Morth

Fig. 9.13 | JLabel with text and with images. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

>

9.7 (Optional) GUI and Graphics Case Study:

Displaying Text and Images Using Labels (Cont.)

» An Imagelcon represents an image that can be
displayed ona JLabel.

» The constructor for ImageIcon receives a String
that specifies the path to the image.

» ImageIcon can load images in GIF, JPEG and PNG
Image formats.

» JLabel method setText changes the text the label
displays.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<4

9.7 (Optional) GUI and Graphics Case Study:
Displaying Text and Images Using Labels (Cont.)

» An overloaded version of method add that takes two
parameters allows you to specify the GUI component to add
to a JFrame and the location in which to add it.
= The first parameter Is the component to attach.
= The second is the region in which it should be placed.

» Each JFrame has a layout to position GUI components.
= Default layout for a JFrame is BorderLayout.

= Five regions—NORTH (top), SOUTH (bottom), EAST (right side),
WEST (left side) and CENTER (constants in class BorderLayout)

= Each region is declared as a constant in class BorderLayout.
» When calling method add with one argument, the JFrame

places the component in the BorderLayout’s CENTER
automatically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

