Chapter 10
Object-Oriented Programming:

Polymorphism and Interfaces
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

Learn the concept of polymorphism.
Use overridden methods to effect polymorphism.
Distinguish between abstract and concrete classes.

Declare abstract methods to create abstract classes.

Learn how polymorphism makes systems extensible and maintainable.

Determine an object’s type at execution time.

Declare and implement interfaces, and become familiar with the Java SE 8 interface
enhancements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction

10.2 Polymorphism Examples

10.3 Demonstrating Polymorphic Behavior
10.4 Abstract Classes and Methods

10.5 Case Study: Payroll System Using Polymorphism

[0.5.1 Abstract Superclass Employee

10.5.2 Concrete Subclass SalariedEmployee

10.5.3 Concrete Subclass HourlyEmpTloyee

10.5.4 Concrete Subclass CommissionEmployee

10.5.5 Indirect Concrete Subclass BasePTusCommissionEmployee
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

10.6 Allowed Assignments Between Superclass and Subclass Variables
10.7 final Methods and Classes
10.8 A Deeper Explanation of Issues with Calling Methods from Constructors

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces

10.9.1 Developing a PayabTle Hierarchy

10.9.2 Interface Payable

10.9.3 Class Invoice

10.9.4 Modifying Class Employee to Implement Interface Payable

10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy

10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
10.9.7 Some Common Interfaces of the Java API

10.10]ava SE 8 Interface Enhancements

10.10.] default Interface Methods
[0.10.2 static Interface Methods
10.10.3 Functional Interfaces

10.11 (Optional) GUI and Graphics Case Study: Drawing with
Polymorphism

10.12Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction

» Polymorphism
= Enables you to “program in the general” rather than “program
In the specific.”
= Polymorphism enables you to write programs that process

objects that share the same superclass as if they were all
objects of the superclass; this can simplify programming.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction (Cont.)

» Example: Suppose we create a program that simulates
the movement of several types of animals for a
biological study. Classes F1sh, Frog and B1rd
represent the three types of animals under investigation.

= Each class extends superclass Animal, which contains a
method move and maintains an animal’s current location as X-
y coordinates. Each subclass implements method move.

= A program maintains an Animal array containing references
to objects of the various Animal subclasses. To simulate the
animals’ movements, the program sends each object the same
message once per second—namely, move.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction (Cont.)

>

Each specific type of Animal responds to a move message
In a unique way:

= a F1sh might swim three feet

= a Frog might jump five feet

= a B1rd might fly ten feet.

The program issues the same message (i.e., move) to each
animal object, but each object knows how to modify its x-y
coordinates appropriately for its specific type of movement.
Relying on each object to know how to “do the right thing”
In response to the same method call is the key concept of
polymorphism.

The same message sent to a variety of objects has “many
forms” of results—hence the term polymorphism.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction (Cont.)

» With polymorphism, we can design and implement
systems that are easily extensible

= New classes can be added with little or no modification to the
general portions of the program, as long as the new classes are
part of the inheritance hierarchy that the program processes
generically.

= The new classes simply “plug right in.”
= The only parts of a program that must be altered to

accommodate new classes are those that require direct
knowledge of the new classes that we add to the hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction (Cont.)

» Once a class Implements an interface, all objects of that
class have an is-a relationship with the interface type,
and all objects of the class are guaranteed to provide
the functionality described by the interface.

» This 1s true of all subclasses of that class as well.

» Interfaces are particularly useful for assigning common
functionality to possibly unrelated classes.

= Allows objects of unrelated classes to be processed
polymorphically—objects of classes that implement the same
Interface can respond to all of the interface method calls.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.1 Introduction (Cont.)

» The chapter continues with an introduction to Java
Interfaces, which are particularly useful for assigning
common functionality to possibly unrelated classes.

» This allows objects of these classes to be processed

polymorphically—objects of classes that implement the
same Interface can respond to all of the interface

method calls.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.2 Polymorphism Examples

» Example: Quadrilaterals
= If Rectangle is derived from Quadrilateral, thena
Rectangle object is a more specific version of a
Quadrilateral.
= Any operation that can be performed on a Quadrilateral can
also be performed on a Rectangle.
= These operations can also be performed on other
Quadrilaterals, such as Squares, Parallelograms and
Trapezoids.
= Polymorphism occurs when a program invokes a method through a
superclass Quadri lateral variable—at execution time, the
correct subclass version of the method is called, based on the type of
the reference stored in the superclass variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.2 Polymorphism Examples (Cont.)

» Example: Space Objects in a Video Game

= Avideo game manipulates objects of classes Mart1ian,
Venusian, Plutonian, SpaceShip and LaserBeam. Each
inherits from SpaceObject and overrides its draw method.

= A screen manager maintains a collection of references to objects of

the various classes and periodically sends each object the same
message—namely, draw.

= Each object responds in a unique way.

- AMartian object might draw itself in red with green eyes and the
appropriate number of antennae.

- A SpaceSh1ip object might draw itself as a bright silver flying saucer.

- ALaserBeam object might draw itself as a bright red beam across the
screen.

= The same message (in this case, draw) sent to a variety of objects
has “many forms” of results.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.2 Polymorphism Examples (Cont.)

» A screen manager might use polymorphism to facilitate
adding new classes to a system with minimal
modifications to the system’s code.

» To add new objects to our video game:

= Build a class that extends SpaceObject and provides its
own draw method implementation.

= When objects of that class appear in the SpaceObject
collection, the screen-manager code invokes method draw,
exactly as it does for every other object in the collection,
regardless of its type.

= So the new objects simply “plug right in” without any
modification of the screen manager code by the programmer.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

he Software Engineering Observation 10. 1

R Polymorphism enables you to deal in generalities and let
the execution-time environment handle the specifics. You
can tell objects to behave in manners appropriate to those
objects, without knowing their specific types, as long as

they belong to the same inheritance hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

‘\'-".'_-.;1

Ji
=

< WA

Software Engineering Observation 10.2
Polymorphism promotes extensibility: Software that
invokes polymorphic behavior is independent of the
object types to which messages are sent. New object types
that can respond to existing method calls can be
incorporated into a system without modifying the base
system. Only client code that instantiates new objects
must be modified to accommodate new types.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.3 Demonstrating Polymorphic
Behavior

» In the next example, we aim a superclass reference at a
subclass object.

= Invoking a method on a subclass object via a superclass reference
Invokes the subclass functionality

= The type of the referenced object, not the type of the variable,
determines which method is called

» This example demonstrates that an object of a subclass can

be treated as an object of its superclass, enabling various
Interesting manipulations.

» A program can create an array of superclass variables that
refer to objects of many subclass types.

= Allowed because each subclass object is an object of its superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.3 Demonstrating Polymorphic
Behavior (Cont.)

» A superclass object cannot be treated as a subclass object,
because a superclass object Is not an object of any of its
subclasses.

» The i1s-a relationship applies only up the hierarchy from a
subclass to its direct (and indirect) superclasses, and not
down the hierarchy:.

» The Java compiler does allow the assignment of a
superclass reference to a subclass variable if you explicitly
cast the superclass reference to the subclass type

= A technique known as downcasting that enables a program to invoke
subclass methods that are not in the superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

«» Software Engineering Observation 10.3
Although its allowed, you should generally avoid

downcasting.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 10.1: PolymorphismTest.java

2 // Assigning superclass and subclass references to superclass and

3 // subclass variables.

4

5 public class PolymorphismTest

6 {

7 public static void main(String[] args)

8 {

9 // assign superclass reference to superclass variable
10 CommissionEmployee commissionEmployee = new CommissionEmployee(
11 "Sue", "Jones", "222-22-2222", 10000, .06);

12

13 // assign subclass reference to subclass variable

14 BasePlusCommissionEmployee basePlusCommissionEmployee =

15 new BasePlusCommissionEmployee(

16 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

17

18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:%n%n%sunsn',
20 "Call CommissionEmployee's toString with superclass reference ",
21 "to superclass object”, commissionEmployee.toString());
22

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass
variables. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // invoke toString on subclass object using subclass variable

24 System.out.printf("%s %s:%n%n%s%ni%n',

25 "Call BasePlusCommissionEmployee's toString with subclass”,
26 "reference to subclass object"”,

27 basePTusCommissionEmployee. toString());

28

29 // invoke toString on subclass object using superclass variable
30 CommissionEmployee commissionEmployee?2 =

31 basePlusCommissionEmployee;

32 System.out.printf("%s %s:%n%n%si%n",

33 "Call BasePlusCommissionEmployee's toString with superclass"”,
34 "reference to subclass object”, commissionEmployee2.toString());
35 } // end main

36 } // end class PolymorphismTest

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass
variables. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Call CommissionEmployee's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Call BasePlusCommissionEmployee's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass
variables. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Call BasePlusCommissionEmployee's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass
variables. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.3 Demonstrating Polymorphic
Behavior (Cont.)

» When a superclass variable contains a reference to a
subclass object, and that reference is used to call a method,
the subclass version of the method is called.

= The Java compiler allows this “crossover” because an object of a
subclass is an object of its superclass (but not vice versa).

» When the compiler encounters a method call made through
a variable, the compiler determines if the method can be
called by checking the variable’s class type.

= |f that class contains the proper method declaration (or inherits one),
the call is compiled.

» At execution time, the type of the object to which the
variable refers determines the actual method to use.
= This process is called dynamic binding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.4 Abstract Classes and Methods

» Abstract classes

= Sometimes it’s useful to declare classes for which you never intend
to create objects.

= Used only as superclasses in inheritance hierarchies, so they are
sometimes called abstract superclasses.

= Cannot be used to instantiate objects—abstract classes are
Incomplete.

= Subclasses must declare the “missing pieces” to become “concrete”
classes, from which you can instantiate objects; otherwise, these
subclasses, too, will be abstract.

» An abstract class provides a superclass from which other
classes can inherit and thus share a common design.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.4 Abstract Classes and Methods
(Cont.)

» Classes that can be used to instantiate objects are called
concrete classes.

» Such classes provide implementations of every method
they declare (some of the implementations can be
Inherited).

» Abstract superclasses are too general to create real

objects—they specify only what iIs common among
subclasses.

» Concrete classes provide the specifics that make it
reasonable to instantiate objects.

» Not all hierarchies contain abstract classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.4 Abstract Classes and Methods
(Cont.)

» Programmers often write client code that uses only
abstract superclass types to reduce client code’s
dependencies on a range of subclass types.

= You can write a method with a parameter of an abstract
superclass type.

= When called, such a method can receive an object of any

concrete class that directly or indirectly extends the superclass
specified as the parameter’s type.

» Abstract classes sometimes constitute several levels of
a hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.4 Abstract Classes and Methods

(Cont.)

4
4

You make a class abstract by declaring it with keyword abstract.
An abstract class normally contains one or more abstract
methods.

= An abstract method is an instance method with keyword abstract in
its declaration, as in

public abstract void draw(); // abstract method
Abstract methods do not provide implementations.

A class that contains abstract methods must be an abstract class
even if that class contains some concrete (nonabstract) methods.

Each concrete subclass of an abstract superclass also must
provide concrete implementations of each of the superclass’s
abstract methods.

Constructors and stati1c methods cannot be declared
abstract.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hEZ Software Engineering Observation 10.4

B An abstract class declares common attributes and
behaviors (both abstract and concrete) of the various
classes in a class hierarchy. An abstract class typically
contains one or more abstract methods that subclasses
must override if they are to be concrete. The instance
variables and concrete methods of an abstract class are
subject to the normal rules of inberitance.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 10.1
Attempting to instantiate an object of an abstract class is
a compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 10.2

Failure to implement a superclass’s abstract methods in a
subclass is a compilation error unless the subclass is also
declared abstract.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.4 Abstract Classes and Methods
(Cont.)

» Cannot instantiate objects of abstract superclasses, but
you can use abstract superclasses to declare variables

= These can hold references to objects of any concrete class
derived from those abstract superclasses.

= We’ll use such variables to manipulate subclass objects
polymorphically.
» Can use abstract superclass names to invoke static
methods declared in those abstract superclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.4 Abstract Classes and Methods
(Cont.)

» Polymorphism is particularly effective for implementing so-
called layered software systems.

» Example: Operating systems and device drivers.

= Commands to read or write data from and to devices may have a
certain uniformity.

= Device drivers control all communication between the operating
system and the devices.

= A write message sent to a device-driver object is interpreted in the
context of that driver and how it manipulates devices of a specific
type.

= The write call itself really is no different from the write to any other
device in the system—place some number of bytes from memory
onto that device.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.4 Abstract Classes and Methods
(Cont.)

» An object-oriented operating system might use an abstract
superclass to provide an “interface” appropriate for all
device drivers.
= Subclasses are formed that all behave similarly.
= The device-driver methods are declared as abstract methods in the

abstract superclass.

= The implementations of these abstract methods are provided in the
subclasses that correspond to the specific types of device drivers.

» New devices are always being developed.
= When you buy a new device, it comes with a device driver provided
by the device vendor and is immediately operational after you
connect it and install the driver.
» This 1s another elegant example of how polymorphism

makes systems extensible.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5 Case Study: Payroll System Using
Polymorphism

» Use an abstract method and polymorphism to perform
payroll calculations based on the type of inheritance
hierarchy headed by an employee.

» Enhanced employee inheritance hierarchy requirements:

= A company pays its employees on a weekly basis. The employees are
of four types: Salaried employees are paid a fixed weekly salary
regardless of the number of hours worked, hourly employees are
paid by the hour and receive overtime pay (i.e., 1.5 times their
hourly salary rate) for all hours worked in excess of 40 hours,
commission employees are paid a percentage of their sales and
base-salaried commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company
has decided to reward salaried-commission employees by adding
10% to their base salaries. The company wants you to write a Java
application that performs its payroll calculations polymorphically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» abstract class Emp loyee represents the general
concept of an employee.

» Subclasses: SalariedEmployee,
commissionEmployee, HourlyEmployee and
BasePlusCommissionEmployee (an indirect
subclass)

» Fig. 10.2 shows the inheritance hierarchy for our
polymorphic employee-payroll application.
» Abstract class names are italicized in the UML.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Employee

SalariedEmployee I CommissionEmployee HourlyEmployee I
BasePlusCommissionEmployee I

Fig. 10.2 | Employee hierarchy UML class diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» Abstract superclass Emp loyee declares the
“Interface” to the hierarchy—that Is, the set of methods
that a program can invoke on all Emp 1oyee objects.

= We use the term “interface” here in a general sense to refer to
the various ways programs can communicate with objects of
any Emp loyee subclass.

» Each employee has a first name, a last name and a
social security number defined in abstract superclass
Employee.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.1 Abstract Superclass Emp loyee

» Class Employee (Fig. 10.4) provides methods
earnings and toString, in addition to the get and set
methods that manipulate Emp loyee’s instance variables.

» An earnings method applies to all employees, but each
earnings calculation depends on the employee’s class.

= An abstract method—there is not enough information to
determine what amount earnings should return.

= Each subclass overrides earnings with an appropriate
implementation.

» Iterate through the array of Emp 1oyees and call method
earnings for each Employee subclass object.
= Method calls processed polymorphically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.5.1 Abstract Superclass Emp 1oyee (Cont.)

» The diagram in Fig. 10.3 shows each of the five classes
In the hierarchy down the left side and methods
earnings and toString across the top.

» For each class, the diagram shows the desired results of
each method.

» Declaring the earnings method abstract
Indicates that each concrete subclass must provide an
appropriate earnings implementation and that a
program will be able to use superclass Emp 1oyee
variables to invoke method earnings
polymorphically for any type of Emp loyee.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

EmpTloyee

Salaried-
Employee

Hourly-
EmpTloyee

Commission-
Employee

BasePlus-
Commission-
Employee

earnings

abstract

weeklySalary

if (hours <= 40)
wage * hours
else if Chours > 40)
{
40 * wage +
(hours - 40) *
wage * 1.5

}

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

toString

firstName lastName
social security number: SSN

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN

gross sales: grossSales;

commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN

gross sales: grossSales;

commission rate: commissionRate;

base salary: baseSalary

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 10.4: Employee.java

2 // Employee abstract superclass.

3

4 public abstract class Employee

5 {

6 private final String firstName;

7 private final String lastName;

8 private final String socialSecurityNumber;
9

10 // constructor

11 public Employee(String firstName, String lastName,
12 String socialSecurityNumber)

13 {

14 this.firstName = firstName;

15 this.lastName = lastName;

16 this.socialSecurityNumber = socialSecurityNumber;
17 }

18

19 // return first name
20 public String getFirstName()
21 {
22 return firstName;
23 }
24

Fig. 10.4 | Employee abstract superclass. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // return last name

26 public String getLastName()

27 {

28 return lastName;

29 }

30

31 // return social security number

32 public String getSocialSecurityNumber()

33 {

34 return socialSecurityNumber;

35 }

36

37 // return String representation of Employee object

38 @verride

39 public String toString()

40 {

41 return String.format("%s %s%nsocial security number: %s",
42 getFirstName(), getLastName(), getSocialSecurityNumber());
43 }

44

45 // abstract method must be overridden by concrete subclasses
46 public abstract double earnings(); // no implementation here

47 } // end abstract class Employee

Fig. 10.4 | EmpTloyee abstract superclass. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.2 Concrete Subclass
Salariedemployee

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 10.1

We've said that you should not call a class’s instance
methods from its constructors—you can call static
class methods and make the required call to one of the su-
perclass’s constructors. If you follow this advice, you'll
avoid the problem of calling the class’s overridable meth-
ods either directly or indirectly, which can lead to run-
time errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 10.5: SalariedEmployee.java

2 // SalariedEmployee concrete class extends abstract class Employee.
3

4 public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

7

8 // constructor

9 public SalariedEmployee(String firstName, String lastName,
10 String socialSecurityNumber, double weeklySalary)

11 {

12 super(firstName, TastName, socialSecurityNumber);

13

14 if (weeklySalary < 0.0)

15 throw new IllegalArgumentException(

16 "Weekly salary must be >= 0.0");

17

18 this.weeklySalary = weeklySalary;

19 }
20

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.
(Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // set salary

22 public void setWeeklySalary(double weeklySalary)
23 {

24 if (weeklySalary < 0.0)

25 throw new ITlegalArgumentException(
26 "Weekly salary must be >= 0.0");
27

28 this.weeklySalary = weeklySalary;

29 }

30

31 // return salary

32 public double getWeeklySalary()

33 {

34 return weeklySalary;

35 }

36

37 // calculate earnings; override abstract method earnings in Employee
38 @verride

39 public double earnings()

40 {

41 return getWeeklySalary(Q);

42 3

43

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.
(Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

44 // return String representation of SalariedEmployee object

45 @lverride

46 public String toString()

47 {

48 return String.format("salaried employee: %s¥%n%s: $%,.2f",
49 super.toString(), "weekly salary", getWeeklySalary());
50 }

51 } // end class SalariedEmployee

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.
(Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.3 Concrete Subclass HourlyEmployee

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 10.6: HourlyEmployee.java

2 // HourlyEmployee class extends Employee.

3

4 public class HourlyEmployee extends Employee

5 |

6 private double wage; // wage per hour

7 private double hours; // hours worked for week

8

9 // constructor

10 public HourlyEmployee(String firstName, String TastName,
11 String socialSecurityNumber, double wage, double hours)
12 {

13 super(firstName, lastName, socialSecurityNumber);

14

15 if (wage < 0.0) // validate wage

16 throw new ITlegalArgumentException(

17 "Hourly wage must be >= 0.0");

18

19 if (Chours < 0.0) || Chours > 168.0)) // validate hours
20 throw new IllegalArgumentException(
21 "Hours worked must be >= 0.0 and <= 168.0");
22

Fig. 10.6 | HourlyEmployee class extends Employee. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 this.wage = wage;

24 this.hours = hours;

25 }

26

27 // set wage

28 public void setWage(double wage)

29 {

30 if (wage < 0.0) // validate wage

31 throw new I1legalArgumentException(
32 "Hourly wage must be >= 0.0");
33

34 this.wage = wage;

35 3

36

37 // return wage

38 public double getWage()

39 {

40 return wage;

41 }

42

Fig. 10.6 | HourTyEmployee class extends Employee. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// set hours worked
public void setHours(double hours)

{
if (Chours < 0.0) || (hours > 168.0)) // validate hours
throw new IllegalArgumentException(
"Hours worked must be >= 0.0 and <= 168.0");
this.hours = hours;
}

// return hours worked
public double getHours()

{
return hours;
}
// calculate earnings; override abstract method earnings in Employee
@verride
public double earnings()
{

if (getHours() <= 40) // no overtime
return getWage() * getHours();
else
return 40 * getWage() + (getHours() - 40) * getWage() * 1.5;
}

10.6 | HourlyEmployee class extends Employee. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

68

69 // return String representation of HourlyEmployee object

70 @verride

71 public String toString()

72 {

73 return String.format("hourly employee: %s%n%s: $%,.2f; %s: %,.2f",
74 super.toString(), "hourly wage", getWage(),

75 "hours worked", getHours());

76 3

77 } // end class HourlyEmployee

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.4 Concrete Subclass
commissionEmployee

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 10.7: CommissionEmployee.java

2 // CommissionEmployee class extends Employee.

3

4 public class CommissionEmployee extends Employee

5 |

6 private double grossSales; // gross weekly sales

7 private double commissionRate; // commission percentage

8

9 // constructor
10 public CommissionEmployee(String firstName, String lastName,
11 String socialSecurityNumber, double grossSales,

12 double commissionRate)

13 {

14 super(firstName, lastName, socialSecurityNumber);

15

16 if (commissionRate <= 0.0 || commissionRate >= 1.0) // validate
17 throw new ITlegalArgumentException(

18 "Commission rate must be > 0.0 and < 1.0");

19
20 if (grossSales < 0.0) // validate
21 throw new ITlegalArgumentException("Cross sales must be >= 0.0");
22

Fig. 10.7 | CommissionEmployee class extends Employee. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

this.grossSales = grossSales;
this.commissionRate = commissionRate;

}

// set gross sales amount
public void setGrossSales(double grossSales)

{
if (grossSales < 0.0) // validate
throw new IllegalArgumentException("Gross sales must be >= 0.0");
this.grossSales = grossSales;
}

// return gross sales amount
public double getGrossSales()
{

}

return grossSales;

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// set commission rate
public void setCommissionRate(double commissionRate)
{
if (commissionRate <= 0.0 || commissionRate >= 1.0) // validate
throw new I1legalArgumentException(
"Commission rate must be > 0.0 and < 1.0");

this.commissionRate = commissionRate;

}

// return commission rate
public double getCommissionRate()
{

return commissionRate;

}

// calculate earnings; override abstract method earnings in Employee
@verride
public double earnings()

{
}

return getCommissionRate() * getGrossSales();

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

65 // return String representation of CommissionEmployee object

66 @verride

67 public String toString()

68 {

69 return String.format("%s: %s%n%s: $%,.2f; %s: %.2f",
70 "commission employee", super.toString(),

71 "gross sales", getGrossSales(),

72 "commission rate", getCommissionRate());

73 }

74 } // end class CommissionEmployee

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.5 Indirect Concrete Subclass
BasePlusCommissionEmployee

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 10.8: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3
4 public class BasePlusCommissionEmployee extends CommissionEmployee
5 |
6 private double baseSalary; // base salary per week
7
8 // constructor
9 public BasePlusCommissionEmployee(String firstName, String lastName,
10 String socialSecurityNumber, double grossSales,
11 double commissionRate, double baseSalary)
12 {
13 super(firstName, lastName, socialSecurityNumber,
14 grossSales, commissionRate);
15
16 if (baseSalary < 0.0) // validate baseSalary
17 throw new ITlegalArgumentException("Base salary must be >= 0.0");
18
19 this.baseSalary = baseSalary;
20 }
21

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmployee.
(Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // set base salary

23 public void setBaseSalary(double baseSalary)

24 {

25 if (baseSalary < 0.0) // validate baseSalary
26 throw new I1legalArgumentException("Base salary must be >= 0.0");
27

28 this.baseSalary = baseSalary;

29 }

30

31 // return base salary

32 public double getBaseSalary()

33 {

34 return baseSalary;

35 3

36

37 // calculate earnings; override method earnings in CommissionEmployee
38 @verride

39 public double earnings()

40 {

41 return getBaseSalary() + super.earnings();
42 }

43

Fig. 10.8 | BasePTusCommissionEmployee class extends CommissionEmployee.
(Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

44 // return String representation of BasePlusCommissionEmployee object

45 @verride

46 public String toString()

47 {

48 return String.format("%s %s; %s: $%,.2f",
49 "base-salaried"”, super.toString(),

50 "base salary'", getBaseSalary());

51 }

52 } // end class BasePlusCommissionEmployee

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmployee.
(Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.6 Polymorphic Processing, Operator
instanceof and Downcasting

» Fig. 10.9 creates an object of each of the four concrete.
= Manipulates these objects nonpolymorphically, via variables of
each object’s own type, then polymorphically, using an array
of Emp loyee variables.
» While processing the objects polymorphically, the
program increases the base salary of each
BasePlusCommissionEmployee by 10%

= Requires determining the object s type at execution time.

» Finally, the program polymorphically determines and
outputs the type of each object in the Emp 1oyee array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 10.9: PayrollSystemTest.java

2 // Employee hierarchy test program.

3

4 public class PayrollSystemTest

5 |

6 public static void main(String[] args)

7 {

8 // create subclass objects

9 SalariedEmployee salariedEmployee =

10 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
11 HourlyEmployee hourlyEmployee =

12 new HourlyEmployee("Karen", "Price™, "222-22-2222", 16.75, 40);
13 CommissionEmployee commissionEmployee =

14 new CommissionEmployee(

15 "Sue", "Jones", "333-33-3333", 10000, .06);

16 BasePlusCommissionEmployee basePlusCommissionEmployee =
17 new BasePTusCommissionEmployee(

18 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);

19
20 System.out.println("Employees processed individually:");
21

Fig. 10.9 | Employee hierarchy test program. (Part | of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

System.out.printf("%n%s¥%n¥%s: $%,.2F%n%n",

salariedEmployee, "earned", salariedEmployee.earnings());
System.out.printf("%s¥kn%s: $%, .2f%n%n",

hourlyEmployee, "earned”, hourlyEmployee.earnings());
System.out.printf("%s¥%n%s: $%,.2t%n%n",

commissionEmployee, "earned"”, commissionEmployee.earnings());
System.out.printf("%s¥n%s: $%,.2Ff%n%n",

basePlusCommissionEmployee,

"earned", basePlusCommissionEmployee.earnings());

// create four-element Employee array
Employee[] employees = new Employee[4];

// initialize array with Employees
employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;
employees[2] commissionEmployee;
employees[3] = basePTusCommissionEmployee;

System.out.printf("Employees processed polymorphically:%n%n");

Fig. 10.9 | Employee hierarchy test program. (Part 2 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

// generically process each element in array employees
for (Employee currentEmployee : employees)

{

System.out.printin(currentEmployee); // invokes toString

// determine whether element is a BasePlusCommissionEmployee
if currentEmployee instanceof BasePlusCommissionEmployee()
{
// downcast Employee reference to
// BasePlusCommissionEmployee reference
BasePlTusCommissionEmployee employee =
(BasePlusCommissionEmployee) currentEmployee ;

employee.setBaseSalary(1.10 * employee.getBaseSalary());

System.out.printf(
"new base salary with 10%% increase is: $%,.2f%n",
employee.getBaseSalary());
} // end if

System.out.printf(
"earned $%,.2f%n%n", currentEmployee.earnings());
} // end for

Fig. 10.9 | Employee hierarchy test program. (Part 3 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

67 // get type name of each object in employees array

68 for (int j = 0; j < employees.length; j++)

69 System.out.printf("Employee %d is a %s%n", j,
70 employees[j].getClass().getName());

71 } // end main

72 } // end class PayrollSystemTest

Fig. 10.9 | Employee hierarchy test program. (Part 4 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned: $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
earned: $500.00

Employees processed polymorphically:

Fig. 10.9 | Employee hierarchy test program. (Part 5 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
new base salary with 10% increase is: $330.00

earned $530.00

Employee 0 1is a SalariedEmployee

Employee 1 is a HourlyEmployee

Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 10.9 | Employee hierarchy test program. (Part 6 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.6 Polymorphic Processing, Operator
instanceof and Downcasting (Cont.)

» All calls to method toString and earnings are
resolved at execution time, based on the type of the
object to which currenteEmp loyee refers.
= Known as dynamic binding or late binding.
= Java decides which class’s toString method to call at

execution time rather than at compile time

» A superclass reference can be used to invoke only
methods of the superclass—the subclass method
Implementations are invoked polymorphically.

» Attempting to invoke a subclass-only method directly
on a superclass reference Is a compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable is a
compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 10.4

When downcasting a reference, a ClassCastExcep-
tion occurs if the referenced object at execution time
does not have an is-a relationship with the type specified

in the cast operator.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.5.6 Polymorphic Processing, Operator
instanceof and Downcasting (Cont.)

» Every object knows its own class and can access this
Information through the getClass method, which all

classes inherit from class Object.

= The getClass method returns an object of type Class (from
package java. lang), which contains information about the
object’s type, including its class name.

= The result of the getClass call is used to invoke getName to
get the object’s class name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hgg Software Engineering Observation 10.5

S8R Although the actual method that’s called depends on the
runtime type of the object to which a variable refers, a
variable can be used to invoke only those methods that
are members of that variable’s type, which the compiler
verifies.

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.6 Summary of the Allowed <

Assignments Between Superclass and

Subclass Variables

» There are three proper ways to assign superclass and
subclass references to variables of superclass and subclass

types.
» Assigning a superclass reference to a superclass variable Is
straightforward.

» Assigning a subclass reference to a subclass variable is
straightfor-ward.

» Assigning a subclass reference to a superclass variable is
safe, because the subclass object is an object of its
superclass.

= The superclass variable can be used to refer only to superclass
members.

= If this code refers to subclass-only mem-bers through the superclass
variable, the compiler reports errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.7 final Methods and Classes

» A final method In a superclass cannot be overridden in
a subclass.

= Methods that are declared private are implicitly final,
because 1t’s not possible to override them in a subclass.

= Methods that are declared static are implicitly final.

= A final method’s declaration can never change, so all
subclasses use the same method implementation, and calls to
final methods are resolved at compile time—this is known
as static binding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.7 final Methods and Classes (Cont.)

» A final class cannot be extended to create a subclass.
= All methods in a final class are implicitly final.

» Class String is an example of a final class.

= |f you were allowed to create a subclass of String, objects of
that subclass could be used wherever Strings are expected.

= Since class String cannot be extended, programs that use
Strings can rely on the functionality of String objects as
specified in the Java API.

= Making the class T1nal also prevents programmers from
creating subclasses that might bypass security restrictions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 10.5
Attempting to declare a subclass of a final class is a
compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hEZ Software Engineering Observation 10.6

BN In the Java API, the vast majority of classes are not
declared Tinal. This enables inheritance and
polymorphism. However, in some cases, it’s important to
declare classes T1nal—typically for security reasons.
Also, unless you carefully design a class for extension, you
should declare the class as final to avoid (often subtle)

errovs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
10.8 A Deeper Explanation of Issues witEi
Calling Methods from Constructors

» Do not call overridable methods from constructors.

» When creating a subclass object, this could lead to an overridden
method being called before the subclass object is fully initialized.

» Recall that when you construct a subclass object, its constructor first
calls one of the direct superclass s constructors.

» If the superclass constructor calls an overridable method, the subclass s
version of that method will be called by the superclass constructor—
before the subclass constructor’s body has a chance to execute.

» This could lead to subtle, difficult-to-detect errors if the subclass
method that was called depends on initialization that has not yet been
performed in the subclass constructor’s body.

» It’s acceptable to call a static method from a constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces

» Our next example reexamines the payroll system of
Section 10.5.

» Suppose that the company involved wishes to perform
several accounting operations in a single accounts payable
application
= Calculating the earnings that must be paid to each employee
= Calculate the payment due on each of several invoices (i.e., bills for

goods purchased)

» Both operations have to do with obtaining some kind of
payment amount.
= For an employee, the payment refers to the employee’s earnings.

= For an invoice, the payment refers to the total cost of the goods listed
on the invoice.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces
(Cont.)

» Interfaces offer a capability requiring that unrelated
classes implement a set of common methods.

» Interfaces define and standardize the ways in which
things such as people and systems can interact with one

another.

= Example: The controls on a radio serve as an interface between
radio users and a radio’s internal components.

= Can perform only a limited set of operations (e.g., change the
station, adjust the volume, choose between AM and FM)

= Different radios may implement the controls in different ways

(e.g., using push buttons, dials, voice commands).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces
(Cont.)

» The interface specifies what operations a radio must
permit users to perform but does not specify how the
operations are performed.

» A Java Interface describes a set of methods that can be
called on an object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces
(Cont.)

» An Interface declaration begins with the keyword
interface and contains only constants and abstract

methods.
= All interface members must be pub11c.

= Interfaces may not specify any implementation details, such as
concrete method declarations and instance variables.

= All methods declared in an interface are implicitly pub11c
abstract methods.

= All fields are implicitly public, staticand final.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

: Good Programming Practice 10. 1
g According to the Java Language Specification, its prop-
er style to declare an interface’s abstract methods
without keywords pub11ic and abstract, because
they re redundant in interface-method declarations.
Similarly, an interface’s constants should be declared
without keywords public, static and final, be-
cause they, too, are redundant.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces
(Cont.)

» To use an interface, a concrete class must specify that it
implements the interface and must declare each method in
the interface with specified signature.
= Add the 1mplements keyword and the name of the interface to the

end of your class declaration’s first line.

» A class that does not implement all the methods of the
Interface is an abstract class and must be declared
abstract.

» Implementing an interface is like signing a contract with the
compiler that states, “I will declare all the methods
specified by the interface or | will declare my class
abstract.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 10.6

Failing to implement any method of an interface in a
concrete class that implements the interface results in a
compilation error indicating that the class must be de-
clared abstract.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces
(Cont.)

» An Interface is often used when disparate classes (i.e.,
unrelated classes) need to share common methods and
constants.

= Allows objects of unrelated classes to be processed
polymorphically by responding to the same method calls.

= You can create an interface that describes the desired

functionality, then implement this interface in any classes that
require that functionality.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9 Creating and Using Interfaces
(Cont.)

» An interface is often used in place of an abstract
class when there is no default implementation to
Inherit—that is, no fields and no default method
Implementations.

» Like pub11c abstract classes, interfaces are
typically pub 11 c types.

» A pub11cinterface must be declared in a file with the
same name as the interface and the . java filename
extension.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hgg Software Engineering Observation 10.7
8N Many developers feel that interfaces are an even more
important modeling technology than classes, especially

with the new interface enbhancements in Java SE 8 (see
Section 10.10).

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.9.1 Developing a Payab | e Hierarchy

» Next example builds an application that can determine
payments for employees and invoices alike.

= Classes Invoice and Emp loyee both represent things for

which the company must be able to calculate a payment
amount.

= Both classes implement the Payab 1 e interface, so a program
can invoke method getPaymentAmount on Invoice
objects and Emp 1oyee objects alike.

= Enables the polymorphic processing of Invo1ices and
Employees.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

K
S’
v.ai

Good Programming Practice 10.2

When declaring a method in an interface, choose a meth-
od name that describes the method’s purpose in a general
manner, because the method may be implemented by
many unrelated classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9.1 Developing a Payab 1 e Hierarchy
(Cont.)

» Fig. 10.10 shows the accounts payable hierarchy.

» The UML distinguishes an interface from other classes
by placing «interface» above the interface name.

» The UML expresses the relationship between a class
and an interface through a realization.

= A class 1s said to “realize,” or implement, the methods of an
Interface.

= A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the
Interface.

» A subclass inherits its superclass’s realization

relationships.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

«interface»
Payable

Invoice I Employee
SalariedEmployee I

Fig. 10.10 | Payable hierarchy UML class diagram.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9.2 Interface Payable

» Fig. 10.11 shows the declaration of interface
Payable.

» Interface methods are always pub11c and

abstract, so they do not need to be declared as such.
» Interfaces can have any number of methods.

» Interfaces may also contain final and static.
constants

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 10.11: Payable.java

2 // Payable 1interface declaration.

3

4 public interface Payable

5 {

6 double getPaymentAmount(); // calculate payment; no implementation
7 1}

Fig. 10.11 | Payable interface declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9.3 Class Invoice

» Java does not allow subclasses to inherit from more
than one superclass, but it allows a class to inherit from

one superclass and implement as many interfaces as it
needs.

» To iImplement more than one interface, use a comma-
separated list of interface names after keyword
1mp lements in the class declaration, as in:

public class ClassName extends SuperclassName
implements Firstinterface, Secondinterface, ...

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

21

// Fig. 10.12: Invoice.java
// Invoice class that implements Payable.

public class Invoice implements Payable
{
private final String partNumber;
private final String partDescription;
private int quantity;
private double pricePerItem;

// constructor
public Invoice(String partNumber, String partDescription, int quantity,
double pricePerItem)
{
if (quantity < 0) // validate quantity
throw new IllegalArgumentException("Quantity must be >= 0");

if (pricePerItem < 0.0) // validate pricePerltem
throw new IllegalArgumentException(
"Price per item must be >= 0");

Fig. 10.12 | Invoice class thatimplements Payable. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 this.quantity = quantity;

23 this.partNumber = partNumber;

24 this.partDescription = partDescription;
25 this.pricePerItem = pricePerltem;

26 } // end constructor

27

28 // get part number

29 public String getPartNumber()

30 {

31 return partNumber; // should validate
32 }

33

34 // get description

35 public String getPartDescription()

36 {

37 return partDescription;

38 }

39

Fig. 10.12 | Invoice classthatimplements Payable. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 // set quantity

41 public void setQuantity(int quantity)

42 {

43 if (quantity < 0) // validate quantity

44 throw new I1legalArgumentException("Quantity must be >= 0");
45

46 this.quantity = quantity;

47 }

48

49 // get quantity

50 public int getQuantity()

51 {

52 return quantity;

53 3

54

55 // set price per item

56 public void setPricePerItem(double pricePerItem)
57 {

58 if (pricePerItem < 0.0) // validate pricePerltem
59 throw new I1legalArgumentException(

60 "Price per item must be >= 0");

61

62 this.pricePerItem = pricePerltem;

63 }

Fig. 10.12 | Invoice classthatimplements Payable. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

64

65 // get price per item

66 public double getPricePerItem()

67 {

68 return pricePerItem;

69 }

70

71 // return String representation of Invoice object

72 @verride

73 public String toString()

74 {

75 return String.format("%s: %n%s: %s (%s) %n%s: %d %n%s: $%,.2f",
76 "invoice”, "part number"”, getPartNumber(), getPartDescription(),
77 "gquantity"”, getQuantity(), "price per item", getPricePerItem());
78 }

79

80 // method required to carry out contract with interface Payable

] | @verride

82 public double getPaymentAmount()

83 {

84 return getQuantity() * getPricePerItem(); // calculate total cost
85 }

86 } // end class Invoice

Fig. 10.12 | Invoice classthatimplements Payable. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

x» Software Engineering Observation 10.8
All objects of a class that implements multiple interfaces
have the is-a relationship with each implemented

interface type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9.4 Modifying Class Emp loyee to
Implement Interface Payable

» When a class implements an interface, it makes a contract

with the compiler
= The class will implement each method in the interface or the class
will be declared abstract.

= Because class Emp 1oyee does not provide a
getPaymentAmount method, the class must be declared

abstract.

= Any concrete subclass of the abstract class must implement the
interface methods to fulfill the contract.

= |If the subclass does not do so, it too must be declared abstract.

» Each direct Emp 1oyee subclass inherits the superclass s
contract to implement method getPaymentAmount and
thus must implement this method to become a concrete
class for which objects can be instantiated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 10.13: Employee.java

2 // Employee abstract superclass that implements Payable.
3

4 public abstract class Employee implements Payable

5 {

6 private final String firstName;

7 private final String lastName;

8 private final String socialSecurityNumber;

9

10 // constructor

11 public Employee(String firstName, String lastName,
12 String socialSecurityNumber)

13 {

14 this.firstName = firstName;

15 this.lastName = lastName;

16 this.socialSecurityNumber = socialSecurityNumber;
17 }

18

19 // return first name
20 public String getFirstName()
21 {
22 return firstName;
23 }

Fig. 10.13 | Employee abstract superclass that implements Payable. (Part | of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // return last name

26 public String getlLastName()

27 {

28 return lTastName;

29 }

30

31 // return social security number

32 public String getSocialSecurityNumber()

33 {

34 return socialSecurityNumber;

35 }

36

37 // return String representation of Employee object

38 @verride

39 public String toString()

40 {

41 return String.format("%s %s%nsocial security number: %s",

42 getFirstName(), getLastName(), getSocialSecurityNumber());
43 }

44

45 // Note: We do not implement Payable method getPaymentAmount here so
46 // this class must be declared abstract to avoid a compilation error.

47 } // end abstract class Employee

Fig. 10.13 | Employee abstract superclass that implements Payable. (Part 2 of

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.9.5 Modifying Class SalariedEmployee
for Use in the Payab 1 e Hierarchy

» Figure 10.14 contains a modified
SalariedEmployee class that extends Emp loyee
and fulfills superclass Emp loyee’s contract to
implement Payab 1 e method getPayment-

Amount.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 10.14: SalariedEmployee.java

2 // SalariedEmployee class that implements interface Payable.
3 // method getPaymentAmount.

4 public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

7

8 // constructor

9 public SalariedEmployee(String firstName, String lastName,
10 String socialSecurityNumber, double weeklySalary)

11 {

12 super(firstName, TastName, socialSecurityNumber);

13

14 if (weeklySalary < 0.0)

15 throw new IllegalArgumentException(

16 "Weekly salary must be >= 0.0");

17

18 this.weeklySalary = weeklySalary;

19 }
20

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // set salary

22 public void setWeeklySalary(double weeklySalary)
23 {

24 if (weeklySalary < 0.0)

25 throw new IllegalArgumentException(
26 "Weekly salary must be >= 0.0");
27

28 this.weeklySalary = weeklySalary;

29 }

30

31 // return salary

32 public double getWeeklySalary()

33 {

34 return weeklySalary;

35 }

36

37 // calculate earnings; implement interface Payable method that was
38 // abstract in superclass Employee

39 @verride

40 public double getPaymentAmount()

41 {

42 return getWeeklySalary();

43 }

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

44

45 // return String representation of SalariedEmployee object
46 @lverride

47 public String toString()

48 {

49 return String.format("salaried employee: %s¥n%s: $%,.2f",
50 super.toString(), "weekly salary"”, getWeeklySalary());
51 }

52 } // end class SalariedEmployee

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

N7

- Software Engineering Observation 10.9

| %a . .
!::‘._,3 . When a method parameter is declared with a superclass
or interface type, the method processes the object passed as

an argument polymorphically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

sz Software Engineering Observation 10.10

k>

EBX Using a superclass reference, we can polymorphically
invoke any method declared in the superclass and its
superclasses (e.g., class Object). Using an interface
reference, we can polymorphically invoke any method
declared in the interface, its superinterfaces (one
interface can extend another) and in class Object—a
variable of an interface type must refer to an object to call
methods, and all objects have the methods of class
Object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.9.5 Modifying Class SalariedEmployee
for Use in the Payab1e Hierarchy (Cont.)

» Obijects of any subclasses of a class that imp lements an
Interface can also be thought of as objects of the interface
type.

» Thus, just as we can assign the reference of a
SalariedEmployee object to a superclass Employee
variable, we can assign the reference of a
SalariedeEmployee object to an interface Payable
variable.

» Invoice implements Payable, so an Invoice object
also is a Payab 1 e object, and we can assign the reference
of an Invo1ice object to a Payab1e variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9.6 Using Interface Payab1e to Process
Invoices and Employees Polymorphically

» PayableInterfaceTest (Fig. 10.15) illustrates

that interface Payab1e can be used to process a set of
Invoices and Employees polymorphically in a
single application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 10.15: PayablelInterfaceTest.java

2 // Payable interface test program processing Invoices and

3 // Employees polymorphically.

4 public class PayablelnterfaceTest

5 |

6 public static void main(String[] args)

7 {

8 // create four-element Payable array

9 Payable[] payableObjects = new Payable[4];

10

11 // populate array with objects that implement Payable

12 payableObjects[0] = new Invoice('01234", "seat", 2, 375.00);
13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =

15 new SalariedEmployee("John™, "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =

17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18

19 System.out.println(
20 "Invoices and Employees processed polymorphically:");
21

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // generically process each element in array payableObjects

23 for (Payable currentPayable : payableObjects)

24 {

25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%n%s %n%s: $%,.2f%n",

27 currentPayable.toString(), // could invoke implicitly

28 "payment due", currentPayable.getPaymentAmount());

29 }

30 } // end main

31 1} // end class PayablelnterfaceTest

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Invoices and Employees processed polymorphically:

invoice:

part number: 01234 (seat)
guantity: 2

price per item: $375.00
payment due: $750.00

invoice:

part number: 56789 (tire)
quantity: 4

price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00

payment due: $1,200.00

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.9.7 Some Common Interfaces of the Java
API
» You’ll use interfaces extensively when developing Java
applications. The Java API contains numerous

Interfaces, and many of the Java APl methods take
Interface arguments and return interface values.

» Figure 10.16 overviews a few of the more popular
Interfaces of the Java API that we use In later chapters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Comparable Java contains several comparison operators (e.g., <, <=, >, >=, ==, !=) that allow
you to compare primitive values. However, these operators cannot be used to
compare objects. Interface Comparable is used to allow objects of a class that
implements the interface to be compared to one another. Interface Comparable is
commonly used for ordering objects in a collection such as an array. We use Com-

parable in Chapter 16, Generic Collections, and Chapter 20, Generic Classes
and Methods.

Serializable An interface used to identify classes whose objects can be written to (i.e., serial-
ized) or read from (i.e., deserialized) some type of storage (e.g., file on disk, data-
base field) or transmitted across a network. We use Serializable in Chapter 15,
Files, Streams and Object Serialization, and Chapter 28, Networking.

Runnable Implemented by any class that represents a task to perform. Objects of such as
class are often executed in parallel using a technique called multithreading (dis-
cussed in Chapter 23, Concurrency). The interface contains one method, run,
which specifies the behavior of an object when executed.

Fig. 10.16 | Common interfaces of the Java API. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

GUI event- You work with graphical user interfaces (GUIs) every day. In your web browser,
listener you might type the address of a website to visit, or you might click a button to
interfaces return to a previous site. The browser responds to your interaction and performs

the desired task. Your interaction is known as an event, and the code that the
browser uses to respond to an event is known as an event handler. In Chapter 12,
GUI Components: Part 1, and Chapter 22, GUI Components: Part 2, you'll
learn how to build GUIs and event handlers that respond to user interactions.
Event handlers are declared in classes that implement an appropriate event-listener
interface. Each event-listener interface specifies one or more methods that must
be implemented to respond to user interactions.

AutoCloseable Implemented by classes that can be used with the try-with-resources statement

(Chapter 11, Exception Handling: A Deeper Look) to help prevent resource
leaks.

Fig. 10.16 | Common interfaces of the Java API. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.10 Java SE 8 Interface Enhancements

» This section introduces Java SE 8’s new interface
features.

» We discuss these in more detail in later chapters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

10.10.1 default Interface Methods

» Prior to Java SE 8, interface methods could be only pub11c

abstract methods.

= An interface specified what operations an implementing class must
perform but not how the class should perform them.

» In Java SE 8, interfaces also may contain public default

methods with concrete default implementations that specify
how operations are performed when an implementing class

does not override the methods.

» If a class implements such an interface, the class also receives
the interface’s default implementations (if any).

» To declare a default method, place the keyword default before
the method’s return type and provide a concrete method

Implementation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.10.1 default Interface Methods (Cont.)

Adding Methods to Existing Interfaces

» Any class that implements the original interface will not break
when a default method is added.
= The class simply receives the new default method.

» When a class implements a Java SE 8 interface, the class
“signs a contract” with the compiler that says,

= “T will declare all the abs tract methods specified by the interface or |
will declare my class abstract”

» The implementing class is not required to override the
interface’s default methods, but it can if necessary.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Nz Software Engineering Observation 10.11

S8X Java SE 8 default methods enable you to evolve
existing interfaces by adding new methods to those
interfaces without breaking code that uses them.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.10.1 default Interface Methods (Cont.)

Interfaces vs. abstract Classes
» Prior to Java SE 8, an interface was typically used

(rather than an abstract class) when there were no
Implementation details to inherit—no fields and no
method implementations.

» With default methods, you can instead declare
common method implementations in interfaces,

which gives you more flexibility in designing your
classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.10.2 static Interface Methods (Cont.)

» Prior to Java SE 8, it was common to associate with an
interface a class containing stati c helper methods for
working with objects that implemented the interface.

» In Chapter 16, you’ll learn about class Col 1ections which
contains many static helper methods for working with
objects that implement interfaces Col lection, L1st, Set
and more.

» Collections method sort can sort objects of any class
that implements interface L1 st.

» With static interface methods, such helper methods can
now be declared directly in interfaces rather than in separate
classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.10.3 Functional Interfaces

» As of Java SE 8, any interface containing only one
abstract method is known as a functional interface.

» Functional interfaces that you’ll use 1n this book include:

= ActionListener (Chapter 12)—You’ll implement this interface to
define a method that’s called when the user clicks a button.

= Comparator (Chapter 16)—You’ll implement this interface to define
a method that can compare two objects of a given type to determine
whether the first object is less than, equal to or greater than the second.

= Runnab1e (Chapter 23)—You’ll implement this interface to define a
task that may be run in parallel with other parts of your program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.11 (Optional) GUI and Graphics Case
Study: Drawing with Polymorphism

» Shape classes have many similarities.

» Using inheritance, we can “factor out” the common
features from all three classes and place them in a
single shape superclass.

» Then, using variables of the superclass type, we can
manipulate objects of all three shape objects
polymorphically.

» Removing the redundancy in the code will result in a

smaller, more flexible program that is easier to
maintain.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java.lang.0Object

MyShape

MyLine I MyOval I MyRectangle I

Fig. 10.17 | MyShape hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

10.8 (Optional) GUI and Graphics Case =

Study: Drawing with Polymorphism

(Cont.)
» Class MyBoundedShape can be used to factor out the

common features of classes MyOval and
MyRectangle.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java.lang.0Object

MyShape

MyLine I MyBoundedShape
MyOval I MyRectangle I

Fig. 10.18 | MyShape hierarchy with MyBoundedShape.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

